Highlights From TIMSS 2011

Mathematics and Science Achievement of U.S. Fourthand Eighth-Grade Students in an International Context

Institute of Education Sciences

Page intentionally left blank

Highlights From TIMSS 2011

Mathematics and Science Achievement of U.S. Fourthand Eighth-Grade Students in an International Context

DECEMBER 2012

Stephen Provasnik
Project Officer
National Center for Education Statistics
David Kastberg
David Ferraro
Nita Lemanski
Stephen Roey
Frank Jenkins
Westat

U.S. Department of Education

Arne Duncan

Secretary

Institute of Education Sciences

John Q. Easton
Director

National Center for Education Statistics

Jack Buckley
Commissioner
The National Center for Education Statistics (NCES) is the primary federal entity for collecting, analyzing, and reporting data related to education in the United States and other nations. It fulfills a congressional mandate to collect, collate, analyze, and report full and complete statistics on the condition of education in the United States; conduct and publish reports and specialized analyses of the meaning and significance of such statistics; assist state and local education agencies in improving their statistical systems; and review and report on education activities in foreign countries.

NCES activities are designed to address high-priority education data needs; provide consistent, reliable, complete, and accurate indicators of education status and trends; and report timely, useful, and high-quality data to the U.S. Department of Education, the Congress, the states, other education policymakers, practitioners, data users, and the general public. Unless specifically noted, all information contained herein is in the public domain.

We strive to make our products available in a variety of formats and in language that is appropriate to a variety of audiences. You, as our customer, are the best judge of our success in communicating information effectively. If you have any comments or suggestions about this or any other NCES product or report, we would like to hear from you. Please direct your comments to

NCES, IES, U.S. Department of Education
1990 K Street NW
Washington, DC 20006-5651

December 2012

The NCES Home Page address is http://nces.ed.gov.
The NCES Publications and Products address is http://nces.ed.gov/pubsearch.
This publication is only available online. To download, view, and print the report as a PDF file, go to the NCES Publications and Products address shown above.

This report was prepared in part under Contract No. ED-04-CO-0059/0026 with Westat. Mention of trade names, commercial products, or organizations does not imply endorsement by the U.S. Government.

Suggested Citation

Provasnik, S., Kastberg, D., Ferraro, D., Lemanski, N., Roey, S., and Jenkins, F. (2012). Highlights From TIMSS 2011: Mathematics and Science Achievement of U.S. Fourth- and Eighth-Grade Students in an International Context (NCES 2013-009). National Center for Education Statistics, Institute of Education Sciences, U.S. Department of Education. Washington, DC.

Content Contact

Stephen Provasnik
(202) 502-7480
stephen.provasnik@ed.gov

Executive Summary

The Trends in International Mathematics and Science Study (TIMSS) is an international comparative study of student achievement. TIMSS 2011 represents the fifth such study since TIMSS was first conducted in 1995. Developed and implemented at the international level by the International Association for the Evaluation of Educational Achievement (IEA)—an international organization of national research institutions and governmental research agencies-TIMSS assesses the mathematics and science knowledge and skills of 4th- and 8th-graders. TIMSS is designed to align broadly with mathematics and science curricula in the participating countries and education systems.

This report focuses on the performance of U.S. students ${ }^{1}$ relative to their peers around the world in countries and other education systems that participated in TIMSS 2011. For the purposes of this report, "countries" are complete, independent political entities, whereas "other education systems" represent a portion of a country, nation, kingdom, or emirate or are other non-national entities (e.g., U.S. states, Canadian provinces, Flemish Belgium, and Northern Ireland). In this report, these "other education systems" are designated as such by their national three-letter international abbreviation appended to their name (e.g., England-GBR, Ontario-CAN). This report also examines changes in mathematics and science achievement compared with TIMSS 1995 and TIMSS 2007.

In 2011, TIMSS was administered at grade 4 in 57 countries and other education systems and, at grade 8, in 56 countries and other education systems. ${ }^{2}$ These total counts include U.S. states that participated in TIMSS 2011 not only as part of the U.S. national sample of public and private schools but also individually with state-level public school samples. At grade 4, this was Florida and North Carolina, and at grade 8 this was Alabama, California, Colorado, Connecticut, Florida, Indiana, Massachusetts, Minnesota, and North Carolina. Note that, because all TIMSS participants are treated equally, these states are compared with the United States (national sample) throughout this report. All differences described in this report are statistically significant at the .05 level. No statistical adjustments to account for multiple comparisons were used.

[^0]Key findings from the report include the following:

Mathematics at grade 4

- The U.S. average mathematics score at grade 4 (541) was higher than the international TIMSS scale average, which is set at $500 .{ }^{3}$
- At grade 4, the United States was among the top 15 education systems in mathematics (8 education systems had higher averages and 6 were not measurably different) and scored higher, on average, than 42 education systems.
- The 8 education systems with average mathematics scores above the U.S. score were Singapore, Korea, Hong Kong-CHN, Chinese Taipei-CHN, Japan, Northern Ireland-GBR, North Carolina-USA, and Belgium (Flemish)-BEL.
- Among the U.S. states that participated in TIMSS at grade 4, North Carolina scored above the TIMSS scale average and the U.S. national average in mathematics, while Florida scored above the TIMSS scale average but was not measurably different from the U.S. national average.
- Compared with 1995, the U.S. average mathematics score at grade 4 was 23 score points higher in 2011 (541 vs. 518).
- Compared with 2007, the U.S. average mathematics score at grade 4 was 12 score points higher in 2011 (541 vs. 529).
- The percentage of 4 th-graders performing at or above the Advanced international mathematics benchmark in 2011 was higher than in the United States in 7 education systems, was not different in 4 education systems, and was lower than in the United States in 45 education systems. ${ }^{4}$

[^1]
Mathematics at grade 8

- The U.S. average mathematics score at grade 8 (509) was higher than the international TIMSS scale average, which is set at 500 .
- At grade 8, the United States was among the top 24 education systems in mathematics (11 education systems had higher averages and 12 were not measurably different) and scored higher, on average, than 32 education systems.
- The 11 education systems with average mathematics scores above the U.S. score were Korea, Singapore, Chinese Taipei-CHN, Hong Kong-CHN, Japan, Massachusetts-USA, Minnesota-USA, the Russian Federation, North Carolina-USA, Quebec-CAN, and Indiana-USA.
- Among the U.S. states that participated in TIMSS at grade 8, Massachusetts, Minnesota, North Carolina, and Indiana scored both above the TIMSS scale average and the U.S. national average in mathematics. Colorado, Connecticut, and Florida scored above the TIMSS scale average, but they were not measurably different from the U.S. national average. California was not measurably different from the TIMSS scale average but scored below the U.S. national average, while Alabama scored both below the TIMSS scale average and the U.S. national average in mathematics.
- Compared with 1995, the U.S. average mathematics score at grade 8 was 17 score points higher in 2011 (509 vs. 492).
- There was no measurable difference between the U.S. average score in 2007 (508) and in 2011 (509).
- The percentage of 8th-grade students performing at or above the Advanced international mathematics benchmark in 2011 was higher than in the United States in 11 education systems; was not different in 13 education systems; and was lower than in the United States in 31 education systems.

Science at grade 4

- In 2011, the average science score of U.S. 4thgraders (544) was higher than the international TIMSS scale average, which is set at 500 .
- At grade 4 , the United States was among the top 10 education systems in science (6 education systems had higher averages and 3 were not measurably different) and scored higher, on average, than 47 education systems.
- The 6 education systems with average science scores above the U.S. score were Korea, Singapore, Finland, Japan, the Russian Federation, and Chinese Taipei-CHN.
- Among the U.S. states that participated in TIMSS at grade 4, both Florida and North Carolina scored above the TIMSS scale average but were not measurably different from the U.S. national average.
- There was no measurable difference between the U.S. average science score at grade 4 in 1995 (542) and in 2011 (544).
- There was no measurable difference between the U.S. average score in 2007 (539) and in 2011 (544).
- The percentage of 4th-graders performing at or above the Advanced international science benchmark in 2011 was higher than in the United States in 3 education systems, was not different in 6 education systems, and was lower than in the United States in 47 education systems.

Science at grade 8

- In 2011, the average science score of U.S. 8th-graders (525) was higher than the TIMSS scale average, which is set at 500.
- At grade 8, the United States was among the top 23 education systems in science (12 education systems had higher averages and 10 were not measurably different) and scored higher, on average, than 33 education systems.
- The 12 education systems with average science scores above the U.S. score were Singapore, MassachusettsUSA, Chinese Taipei-CHN, Korea, Japan, MinnesotaUSA, Finland, Alberta-CAN, Slovenia, the Russian Federation, Colorado-USA, and Hong Kong-CHN.
- Among the U.S. states that participated in TIMSS at grade 8, Massachusetts, Minnesota, and Colorado scored both above the TIMSS scale average and the U.S. national average in science. Indiana, Connecticut, North Carolina, and Florida scored above the TIMSS scale average, but they were not measurably different from the U.S. national average. California was not measurably different from the TIMSS scale average but scored below the U.S. national average, while Alabama scored both below the TIMSS scale average and the U.S. national average in science.
- Compared with 1995, the U.S. average science score was 12 score points higher in 2011 (525 vs. 513).
- There was no measurable difference between the U.S. average score in 2007 (520) and in 2011 (525).
- The percentage of 8th-grade students performing at or above the Advanced international science benchmark in 2011 was higher than in the United States in 12 education systems, was not different in 10 education systems, and was lower than in the United States in 33 education systems.

Acknowledgments

The authors wish to thank the students, teachers, and school officials who participated in TIMSS 2011. Without their assistance and cooperation, this study would not be possible. The authors also wish to thank all those who contributed to the TIMSS design, implementation, and data collection as well as the writing, production, and review of this report. We especially want to thank the TIMSS state coordinators: Rhonda Patton (Alabama), Jessica Valdez (California), Pam Sandoval (Colorado), Renee Savoie (Connecticut), Todd Clark (Florida), Mark O'Malley (Indiana), Rebecca Bennett (Massachusetts), Kate Beattie (Minnesota), and Iris Garner (North Carolina).

Page intentionally left blank

Contents

Page
Executive Summary iii
Acknowledgments v
Contents vii
List of Tables ix
List of Figures xii
List of Exhibits xiii
Introduction 1
TIMSS in brief 1
Countries or Education Systems? 1
Design and administration of TIMSS 3
The mathematics assessment 4
The science assessment 4
For more detailed information 4
Reporting TIMSS results 5
Nonresponse bias in the U.S.TIMSS samples. 6
Further information 7
Mathematics Performance in the United States and Internationally 9
Average scores in 2011 9
Change in scores 12
Content domain scores in 2011 16
Performance on the TIMSS international benchmarks 19
Average scores of male and female students 24
Performance within the United States 27
Average scores of students of different races and ethnicities 27
Average scores of students attending public schools of various poverty levels 28
TIMSS 2011 results for Alabama 29
TIMSS 2011 results for California 30
TIMSS 2011 results for Colorado 31
TIMSS 2011 results for Connecticut 32
TIMSS 2011 results for Florida 33
TIMSS 2011 results for Indiana 35
TIMSS 2011 results for Massachusetts 36

Contents - continued

Page
TIMSS 2011 results for Minnesota. 37
TIMSS 2011 results for North Carolina 38
Science Performance in the United States and Internationally 41
Average scores in 2011 41
Change in scores 41
Content domain scores in 2011 48
Performance on the TIMSS international benchmarks 50
Average scores of male and female students 56
Performance within the United States 58
Average scores of students of different races and ethnicities 58
Average scores of students attending public schools of various poverty levels 59
TIMSS 2011 results for Alabama 60
TIMSS 2011 results for California 61
TIMSS 2011 results for Colorado 62
TIMSS 2011 results for Connecticut 63
TIMSS 2011 results for Florida 64
TIMSS 2011 results for Indiana 66
TIMSS 2011 results for Massachusetts 67
TIMSS 2011 results for Minnesota. 68
TIMSS 2011 results for North Carolina 69
References 71
Appendix A: Technical Notes A-1
Appendix B: Example Items B-1
Appendix C: TIMSS-NAEP Comparison C-1
Appendix D: Online Resources and Publications D-1
Appendix E: Standard Error Tables (ONLINE ONLY)

List of Tables

Table 1. Participation in the TIMSS assessment, by education system: 1995, 1999, 2003, 2007, and 2011 2
Table 2. Percentage of TIMSS mathematics and science assessment score points at grade 4 and 8 devoted to content and cognitive domains: 2011 5
Table 3. Average mathematics scores of 4th-grade students, by education system: 2011 10
Table 4. Average mathematics scores of 8th-grade students, by education system: 2011 11
Table 5. Average mathematics content domain scores of 4th-grade students, by education system: 2011 17
Table 6. Average mathematics content domain scores of 8th-grade students, by education system: 2011 18
Table 7. Description of TIMSS international mathematics benchmarks, by grade: 2011 19
Table 8. Average mathematics scores of 8th-grade students in Alabama public schools compared with other participating education systems: 2011 29
Table 9. Average mathematics scores in grade 8 for selected student groups in public schools in Alabama: 2011 29
Table 10. Average mathematics scores of 8th-grade students in California public schools compared with other participating education systems: 2011 30
Table 11. Average mathematics scores in grade 8 for selected student groups in public schools in California: 2011 30
Table 12. Average mathematics scores of 8 th-grade students in Colorado public schools compared with other participating education systems: 2011 31
Table 13. Average mathematics scores in grade 8 for selected student groups in public schools in Colorado: 2011 31
Table 14. Average mathematics scores of 8th-grade students in Connecticut public schools compared with other participating education systems: 2011 32
Table 15. Average mathematics scores in grade 8 for selected student groups in public schools in Connecticut: 2011 32
Table 16. Average mathematics scores of 4th- and 8th-grade students in Florida public schools compared with other participating education systems: 2011 33
Table 17. Average mathematics scores in grade 4 and 8 for selected student groups in public schools in Florida: 2011 34
Table 18. Average mathematics scores of 8th-grade students in Indiana public schools compared with other participating education systems: 2011 35
Table 19. Average mathematics scores in grade 8 for selected student groups in public schools in Indiana: 2011 35
Table 20. Average mathematics scores of 8th-grade students in Massachusetts public schools compared with other participating education systems: 2011 36
Table 21. Average mathematics scores in grade 8 for selected student groups in public schools in Massachusetts: 2011 36
Table 22. Average mathematics scores of 8th-grade students in Minnesota public schools compared with other participating education systems: 2011 37

List of Tables - Continued

Page
Table 23. Average mathematics scores in grade 8 for selected student groups in public schools in Minnesota: 2011 37
Table 24. Average mathematics scores of 4th- and 8th-grade students in North Carolina public schools compared with other participating education systems: 2011 38
Table 25. Average mathematics scores in grade 4 and 8 for selected student groups in public schools in North Carolina: 2011 39
Table 26. Average science scores of 4th-grade students, by education system: 2011 42
Table 27. Average science scores of 8th-grade students, by education system: 2011 43
Table 28. Average science content domain scores of 4th-grade students, by education system: 2011 48
Table 29. Average science content domain scores of 8th-grade students, by education system: 2011 49
Table 30. Description of TIMSS international science benchmarks, by grade: 2011 51
Table 31. Average science scores of 8th-grade students in Alabama public schools compared with other participating education systems: 2011 60
Table 32. Average science scores in grade 8 for selected student groups in public schools in Alabama: 2011 60
Table 33. Average science scores of 8th-grade students in California public schools compared with other participating education systems: 2011 61
Table 34. Average science scores in grade 8 for selected student groups in public schools in California: 2011 61
Table 35. Average science scores of 8th-grade students in Colorado public schools compared with other participating education systems: 2011 62
Table 36. Average science scores in grade 8 for selected student groups in public schools in Colorado: 2011 62
Table 37. Average science scores of 8th-grade students in Connecticut public schools compared with other participating education systems: 2011 63
Table 38. Average science scores in grade 8 for selected student groups in public schools in Connecticut: 2011 63
Table 39. Average science scores of 4th- and 8th-grade students in Florida public schools compared with other participating education systems: 2011 64
Table 40. Average science scores in grade 4 and 8 for selected student groups in public schools in Florida: 2011 65
Table 41. Average science scores of 8th-grade students in Indiana public schools compared with other participating education systems: 2011 66
Table 42. Average science scores in grade 8 for selected student groups in public schools in Indiana: 2011 66
Table 43. Average science scores of 8th-grade students in Massachusetts public schools compared with other participating education systems: 2011 67
Table 44. Average science scores in grade 8 for selected student groups in public schools in Massachusetts: 2011 67

List of Tables - Continued

Page
Table 45. Average science scores of 8th-grade students in Minnesota public schools compared with other participating education systems: 2011 68
Table 46. Average science scores in grade 8 for selected student groups in public schools in Minnesota: 2011 68
Table 47. Average science scores of 4th- and 8th-grade students in North Carolina public schools compared with other participating education systems: 2011 69
Table 48. Average science scores in grade 4 and 8 for selected student groups in public schools in North Carolina: 2011 70
Table A-1. Coverage of target populations, school participation rates, and student response rates, by grade and education system: 2011 A-8
Table A-2. Total number of schools and students, by grade and education system: 2011 A-12
Table A-3. Number and percentage distribution of new and trend mathematics and science items in the TIMSS assessment, by grade and domain: 2011 A-18
Table A-4. Number of mathematics and science items in the TIMSS grade 4 and grade 8 assessments, by type and content domain: 2011 A-19
Table A-5. Weighted response rates for unimputed variables for TIMSS, by grade: 2011 A-25

List of Figures

Page
Figure 1. Change in average mathematics scores of 4th-grade students, by education system:2007-2011 and 1995-201112
Figure 2. Change in average mathematics scores of 8th-grade students, by education system: 2007-2011 and 1995-2011 14
Figure 3. Percentage of 4th-grade students reaching the TIMSS international benchmarks in mathematics, by education system: 2011 20
Figure 4. Percentage of 8th-grade students reaching the TIMSS international benchmarks in mathematics, by education system: 2011 22
Figure 5. Difference in average mathematics scores of 4th-grade students, by sex and education system: 2011 25
Figure 6. Difference in average mathematics scores of 8th-grade students, by sex and education system: 2011 26
Figure 7. Average mathematics scores of U.S. 4th- and 8th-grade students, by race/ethnicity: 2011 27
Figure 8. Average mathematics scores of U.S. 4th- and 8th-grade students, by percentage of public school students eligible for free or reduced-price lunch: 2011 28
Figure 9. Change in average science scores of 4th-grade students, by education system: 2007-2011 and 1995-2011 44
Figure 10. Change in average science scores of 8th-grade students, by education system: 2007-2011 and 1995-2011 46
Figure 11. Percentage of 4th-grade students reaching the TIMSS international benchmarks in science, by education system: 2011 52
Figure 12. Percentage of 8th-grade students reaching the TIMSS international benchmarks in science, by education system: 2011 54
Figure 13. Difference in average science scores of 4th-grade students, by sex and education system: 2011 56
Figure 14. Difference in average science scores of 8th-grade students, by sex and education system: 2011 57
Figure 15. Average science scores of U.S. 4th- and 8th-grade students, by race/ethnicity: 2011 58Figure 16. Average science scores of U.S. 4th- and 8th-grade students, by percentageof public school students eligible for free or reduced-price lunch: 201159

List of Exhibits

Page
Exhibit B-1. Sample TIMSS 2011 mathematics items, by grade level, international benchmark level, content domain, cognitive domain, and item response type B-1
Exhibit B-2. Sample TIMSS 2011 science items, by grade level, international benchmark level, content domain, cognitive domain, and item response type B-1
Exhibit B-3. Example 4th-grade mathematics item: 2011 Favorite colors of Darin's friends B-2
Exhibit B-4. Example 4th-grade mathematics item: 2011 Which dotted line is a line of symmetry? B-3
Exhibit B-5. Example 4th-grade mathematics item: 2011
Distance between towns using map B-4
Exhibit B-6. Example 4th-grade mathematics item: 2011 Recipe for 3 people B-5
Exhibit B-7. Example 8th-grade mathematics item: 2011
Add 42.65 to 5.748 B-6
Exhibit B-8. Example 8th-grade mathematics item: 2011 Next term in the pattern B-7
Exhibit B-9. Example 8th-grade mathematics item: 2011
Probability that the marble is red B-8
Exhibit B-10. Example 8th-grade mathematics item: 2011
Degrees minute hand of clock turns B-9
Exhibit B-11. Example 4th-grade science item: 2011
Birds/bats/butterflies share B-10
Exhibit B-12. Example 4th-grade science item: 2011
Temperature of ice, steam, water B-11
Exhibit B-13. Example 4th-grade science item: 2011
Better way to travel around town B-12
Exhibit B-14. Example 4th-grade science item: 2011 Disadvantage to farming by a river B-13
Exhibit B-15. Example 8th-grade science item: 2011
Which rod causes the bulb to light? B-14
Exhibit B-16. Example 8th-grade science item: 2011
Cells that destroy bacteria B-15
Exhibit B-17. Example 8th-grade science item: 2011 Volcanic eruption effects B-16
Exhibit B-18. Example 8th-grade science item: 2011
Water wheel: Faster rotation B-17

Page intentionally left blank

Introduction

TIMSS in brief

The Trends in International Mathematics and Science Study (TIMSS) is an international comparative study of student achievement. TIMSS 2011 represents the fifth such study since TIMSS was first conducted in 1995. Developed and implemented at the international level by the International Association for the Evaluation of Educational Achievement (IEA), an international organization of national research institutions and governmental research agencies, TIMSS is used to measure the mathematics and science knowledge and skills of 4th- and 8th-graders over time.

TIMSS is designed to align broadly with mathematics and science curricula in the participating countries and education systems. The results, therefore, suggest the degree to which students have learned mathematics and science concepts and skills likely to have been taught in school. TIMSS also collects background information on students, teachers, schools, curricula, and official education policies to allow cross-national comparison of educational contexts that may be related to student achievement. In 2011, there were 54 countries and 20 other education systems that participated in TIMSS, at the 4th- or 8th-grade level, or both. ${ }^{1}$ For the purposes of this report, "countries" are complete, independent political entities, whereas "other education systems" represent a portion of a country, nation, kingdom, or emirate or are other non-national entities. Thus the category "other education systems" includes all U.S. states and Canadian provinces that participated as "benchmarking participants" ${ }^{2}$ as well as Flemish Belgium, Chinese Taipei, England, Hong Kong Special Administrative Region, Northern Ireland, and the Palestinian National Authority. In this report these "other education systems" are designated as such by their national three-letter international abbreviation appended to their name (e.g., England-GBR, Ontario-CAN).

This report presents the performance of U.S. students relative to their peers in other countries and other education systems, and reports on changes in mathematics and science achievement since 1995. Most of the findings in the report are based on the results presented in two international reports published by the IEA and available online at http://www.timss.org:

- TIMSS 2011 International Results in Mathematics (Mullis et al. 2012); and
- TIMSS 2011 International Results in Science (Martin et al. 2012).

Countries or Education Systems?

The international bodies that coordinate international assessments vary in the labels they apply to participating entities. For example, the IEA, which coordinates TIMSS and the Progress in International Reading Literacy Study (PIRLS), differentiates between IEA members, which the IEA refers to as "countries" in all cases, and "benchmarking participants." IEA members include countries such as the United States and Japan, as well as subnational entities, such as England and Scotland (which are both part of the United Kingdom), the Flemish community of Belgium and the French community of Belgium, and Hong Kong, which is a Special Administrative Region of China. IEA benchmarking participants are all subnational entities and include U.S. states, Dubai in the United Arab Emirates, and, in 2011, participating Canadian provinces. The Organization for Economic Cooperation and Development (OECD), which coordinates the Program for International Student Assessment (PISA), differentiates between OECD member countries and all other participating entities (called "partner countries" or "partner economies"), which include countries and subnational entities. In PISA, the United Kingdom and Belgium are reported as whole countries. Hong Kong is a PISA partner country, as are countries like Singapore, which is not an OECD member but is an IEA member.

In an effort to increase the comparability of results across the international assessments in which the United States participates, this report uses a standard international classification of nation-states (see the U.S. State Department list of "independent states" at http://www.state.gov/s/inr/rls/4250.htm) to report out separately "countries" and "other education systems," which include all other non-national entities that received a TIMSS score. This report's tables and figures, which are primarily adapted from the IEA's TIMSS 2011 report, follow the IEA TIMSS convention of placing members and nonmembers in separate parts of the tables and figures in order to facilitate readers moving between the international and U.S. national report. However, the text of this report refers to "countries" and "other education systems," following the standard classification of nation-states.

Table 1. Participation in the TIMSS assessment, by education system: 1995, 1999, 2003, 2007, and 2011

Education system	Year and grade				
	1995	1999	2003	2007	2011
Total count	52	54	51	65	77
Total IEA members count	44	37	47	57	63
Algeria				48	
Argentina	\ddagger		\ddagger		
Armenia			48	48	48
Australia	48	8	48	48	48
Austria	48			4	4
Azerbaijan					4
Bahrain			8	8	48
Belgium (Flemish)-BEL	8	8	48		4
Belgium (French)-BEL	8				
Bosnia \& Herzegovina				8	
Botswana ${ }^{1}$			8	8	48
Canada	48	8			
Chile		8	8		48
Chinese Taipei-CHN		8	48	48	48
Colombia	8			48	
Croatia					4
Cyprus	48	8	48	8	
Czech Republic	48	8		48	4
Denmark	8			4	4
Egypt			8	8	
El Salvador				48	
England-GBR	48	8	$4 \ddagger$	48	48
Estonia			8		
Finland		8			48
France	8				
Georgia				48	48
Germany	8			4	4
Ghana			8	8	8
Greece	48				
Honduras ${ }^{1}$					48
Hong Kong-CHN	48	8	48	48	48
Hungary	48	8	48	48	48
Iceland	48				
Indonesia	$\ddagger \ddagger$	8	8	8	8
Iran, Islamic Republic	48	8	48	48	48
Ireland	48				4
Israel	48	8	8	8	8
Italy	$\ddagger \ddagger$	8	48	48	48
Japan	48	8	48	48	48
Jordan		8	8	8	8

Education system	Year and grade				
	1995	1999	2003	2007	2011
Kazakhstan				4	48
Korea, Republic of	48	8	8	8	48
Kuwait	48			48	4
Latvia	48	8	48	4	
Lebanon			8	8	8
Lithuania	8	8	48	48	48
Macedonia, Republic of		8	8		8
Malaysia		8	8	8	8
Malta				8	4
Mexico	$\ddagger \ddagger$				
Moldova, Republic of		8	48		
Morocco		8	48	$4 \ddagger$	48
Netherlands	48	8	48	4	4
New Zealand	48	8	48	4	48
Northern Ireland-GBR					4
Norway	48		48	48	48
Oman				8	48
Palestinian Nat'l Authority			8	8	8
Philippines	\ddagger	8	48		
Poland					4
Portugal	48				4
Qatar				48	48
Romania	8	8	8	8	48
Russian Federation	8	8	48	48	48
Saudi Arabia			8	8	48
Scotland-GBR	48		48	48	
Serbia			8	8	4
Singapore	48	8	48	48	48
Slovak Republic	8	8	8	4	4
Slovenia	48	8	48	48	48
South Africa ${ }^{2}$	8	8	8		8
Spain	8				4
Sweden	8		8	48	48
Syrian Arab Republic				8	8
Thailand	48	8		8	48
Tunisia		8	48	48	48
Turkey		8		8	48
Ukraine				48	8
United Arab Emirates					48
United States	48	8	48	48	48
Yemen ${ }^{3}$			\ddagger	4	4

See notes at end of table.

It is important to note that comparisons in this report treat all participating education systems equally, as is done in the international reports. Thus, the United States is compared with some education systems that participated in the absence of a complete national sample (e.g., Northern Ireland-GBR partici $ᄀ$ pated but there was no national United Kingdom sample) as well as with some education systems that participated as part of a complete national sample (e.g., Alabama-USA participated as a separate state sample of public schools and as part of the United State national sample of all schools).

For a number of countries and education systems, changes in achievement can be documented over the last 16 years, from 1995 to 2011. For those that began participating in TIMSS data collections after 1995, changes can only be documented over a shorter period of time. Table 1 shows the countries and other education systems that participated in TIMSS 2011 as well as their participation status in the earlier TIMSS data collections. The TIMSS 4th-grade assessment was implemented in 1995, 2003, 2007, and 2011, while the 8th-grade assessment was implemented in 1995, 1999, 2003, 2007, and 2011.

Table 1. Participation in the TIMSS assessment, by education system: 1995, 1999, 2003, 2007, and 2011

 -Continued| Benchmarking education systems | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | Year and grade | | | | |
| Education system | 1995 | 1999 | 2003 | 2007 | 2011 |
| Total benchmarking | 8 | 17 | 4 | 8 | 14 |
| Abu Dhabi-UAE | | | | | 48 |
| Alabama-USA | | | | | 8 |
| Alberta-CAN | 48 | 8 | | 4 | 48 |
| Basque Country-ESP | | | 8 | 8 | |
| British Columbia-CAN | | 8 | | 48 | |
| California-USA | | | | | 8 |
| Colorado-USA | 4 | | | | 8 |
| Connecticut-USA | | 8 | | | 8 |
| Dubai-UAE | | | | 48 | 48 |
| Florida-USA | | | | | 48 |
| Idaho-USA | | 8 | | | |
| Illinois-USA | 8 | 8 | | | |

Education system	Year and grade				
	1995	1999	2003	2007	2011
Indiana-USA		8	48		8
Maryland-USA		8			
Massachusetts-USA		8		48	8
Michigan-USA		8			
Minnesota-USA	48			48	8
Missouri-USA	8	8			
North Carolina-USA		8			48
Ontario-CAN	48	8	48	48	48
Oregon-USA	8	8			
Pennsylvania-USA		8			
Quebec-CAN	48	8	48	48	48
South Carolina-USA		8			
Texas-USA		8			

\ddagger Participated in assessment but results not reported.
${ }^{1}$ Administered the TIMSS 4th-grade assessment to 6th-grade students and the 8th-grade assessment to 9th-grade students in 2011.
${ }^{2}$ Administered the TIMSS 8th-grade assessment to 9th-grade students in 2011.
${ }^{3}$ Administered the TIMSS 4th-grade assessment to a national sample of 4th-grade students and a national sample of 6th-grade students in 2011.
NOTE: Italics indicates participants identified and counted in this report as an education system and not as a separate country. The number in the table indicates the grade level of the assessment administered. TIMSS did not assess grade 4 in 1999. Only education systems that completed the necessary steps for their data to meet TIMSS standards and be eligible to appear in the reports from the International Study Center are listed. Unless otherwise noted, education systems sampled students enrolled in the grade corresponding, respectively, to the 4th and 8th year of formal schooling, counting the International Standard Classification of Education (ISCED) Level 1 as the first year of formal schooling, providing that the mean age at the time of testing was, respectively, at least 9.5 and 13.5 years. In the United States and most other countries this corresponds, respectively, to grade 4 and grade 8. Benchmarking education systems are subnational entities that are not members of the IEA but chose to participate in TIMSS to be able to compare themselves internationally.
SOURCE: International Association for the Evaluation of Educational Achievement (IEA), Trends in International Mathematics and Science Study (TIMSS), 1995,
1999, 2003, 2007, and 2011.

This report describes additional details about the achievement of U.S. students that are not available in the international reports, such as the achievement of students of different racial and ethnic and socioeconomic backgrounds. Results are presented in tables, figures, and text summaries of the tables and figures. In the interest of brevity, in most cases, the text reports only the names of countries and other education systems (including U.S. states) scoring higher than or not measurably different from the United States (not those scoring lower than the United States). In addition, because all TIMSS participants are treated equally, comparisons are made throughout this report between the United States (national sample) and the U.S. states that participated in TIMSS 2011 not only as part of the U.S. national sample of public and private schools but also individually with state-level public school samples. Summaries for each of these U.S. states are included in the section, "Performance within the United States."

Design and administration of TIMSS

TIMSS 2011 is sponsored by the IEA and carried out under a contract with the TIMSS \& PIRLS International Study Center at Boston College. ${ }^{3}$ The National Center for Education

[^2]Statistics (NCES), in the Institute of Education Sciences at the U.S. Department of Education, is responsible for the implementation of TIMSS in the United States. Data collection in the United States was carried out under contract to Westat and its subcontractor, Pearson Educational Measurement.

Participating countries and education systems administered TIMSS to a probability sample of 4th- and 8th-grade students and schools, based on standardized definitions. TIMSS required participating countries and other education systems to draw samples of students who were nearing the end of their fourth or eighth year of formal schooling, counting from the first year of the International Standard Classification of Education (ISCED) Level 1.4 In most education systems, including the United States, these students were in the 4th and 8th grades. Details on the average age at the time of testing in each education system are included in appendix A.

In the United States, one sample was drawn to represent the nation at grade 4 and another at grade 8. In addition to these two national samples, several state public school samples

[^3]were also drawn at both grades in order to benchmark those states' student performance internationally. Separate state public school samples were drawn, at grade 4, for Florida and North Carolina and, at grade 8, for Alabama, California, Colorado, Connecticut, Florida, Indiana, Massachusetts, Minnesota, and North Carolina. Some of these states chose to participate as benchmarking participants in order to compare their performance internationally, and others were invited to participate in TIMSS by the National Assessment of Educational Progress (NAEP), which is conducting a study to link TIMSS and NAEP (as explained in appendix A).
The states invited to participate were selected based on state enrollment size and willingness to participate, as well as on their general NAEP performance (above or below the national average on NAEP), their previous experience in benchmarking to TIMSS, and their regional distribution.

In the United States, TIMSS was administered between April and June 2011. The U.S. national sample included both public and private schools, randomly selected and weighted to be representative of the nation at grade 4 and at grade $8 .{ }^{5}$ In total, the U.S. national sample consisted of 369 schools and 12,569 students at grade 4, and 501 schools and 10,477 students at grade 8. (For the participation rates for all the U.S. state samples, see table A-1 in appendix A.) The weighted school response rate for the United States was 79 percent at grade 4 before the use of substitute schools (schools substituted for originally sampled schools that refused to participate) and 84 percent with the inclusion of substitute schools. ${ }^{6}$ At grade 8 , the weighted school response rate before the use of substitute schools as well as with the inclusion of substitute schools was 87 percent. The weighted student response rate at grade 4 was 95 percent and at grade 8 was 94 percent. Student response rates are based on a combined total of students from both sampled and substitute schools. (For the response rates for each of the U.S. states that participated in TIMSS, see table A-1 in appendix A.) Detailed information on sampling, administration, response rates, and other technical issues are in appendix A.

[^4]
The mathematics assessment

The TIMSS mathematics assessment is organized around two dimensions: (1) a content dimension specifying the subject matter to be assessed and (2) a cognitive dimension specifying the cognitive or thinking processes to be assessed. At grade 4, TIMSS assesses student knowledge in three content domains: number, geometric shapes and measures, and data display. At grade 8, TIMSS assesses student knowledge in four content domains: number, algebra, geometry, and data and chance. At both grades (and across all content domains), TIMSS assesses students' mathematical thinking in three cognitive domains: knowing, applying, and reasoning. Example items from the TIMSS mathematics assessment are included in appendix B (see items B-1 through B-10).

The proportion of item score points devoted to a content domain and, therefore, the contribution of the content domain to the overall mathematics scale score differ somewhat across grades (as shown in table 2). For example, in 2011 at grade 4, one-half or 50 percent of the TIMSS mathematics assessment focused on the number content domain, while the analogous percentage at grade 8 was 29 percent. The proportion of items devoted to each cognitive domain was similar across grades.

The science assessment

Similarly, the TIMSS science assessment is organized around two dimensions: (1) a content dimension specifying the subject matter to be assessed and (2) a cognitive dimension specifying the cognitive or thinking processes to be assessed. At grade 4, TIMSS assesses student knowledge in three content domains: life science, physical science, and Earth science. At grade 8, TIMSS assesses student knowledge in four content domains: biology, chemistry, physics, and Earth science. At both grades (and across all content domains), TIMSS assesses students' scientific thinking in three cognitive domains: knowing, applying, and reasoning. Example items from the TIMSS science assessment are included in appendix B (see items B-11 through B-18).

The proportion of item score points devoted to a content domain and, therefore, the contribution of the content domain to the overall science scale score differ somewhat across grades (as shown in table 2). For example, in 2011 at grade 4, some 21 percent of the TIMSS science assessment focused on the Earth science domain, while the analogous percentage at grade 8 was 18 percent. The proportion of items also differed slightly across grades. For example, 41 percent of the TIMSS science assessment at grade 4 focused on the knowing cognitive domain, whereas at grade 8 it was 32 percent.

For more detailed information

In both the mathematics and science assessments, items vary in terms of difficulty and the form of knowledge and skills addressed; they also differ across grade levels to reflect the nature, difficulty, and emphasis of the subject matter
encountered in school at each grade. For more detailed descriptions of the range of content and cognitive domains assessed in TIMSS, see the TIMSS 2011 Assessment Frameworks (Mullis et al. 2009). The development and validation of the mathematics cognitive domains is detailed in IEA's TIMSS 2003 International Report on Achievement in the Mathematics Cognitive Domains: Findings From a Developmental Project (Mullis, Martin, and Foy 2005).

Reporting TIMSS results

TIMSS achievement results are reported on a scale from 0 to 1,000 , with a TIMSS scale average of 500 and standard deviation of 100. TIMSS provides an overall mathematics scale score and an overall science scale score as well as content and cognitive domain scores for each subject at each grade level. The scaling of data is conducted separately for each subject and grade. Data are also scaled separately for each of the content and cognitive domains.

Table 2. Percentage of TIMSS mathematics and science assessment score points at grade 4 and 8 devoted to content and cognitive domains: 2011

Mathematics content and cognitive domains

Grade 4		Grade 8	
Content domains	Percent of assessment	Content domains	Percent of assessment
Number	50	Number	29
Geometric shapes and measures	35	Algebra	33
Data display	15	Geometry	19
		Data and chance	19
Cognitive domains	Percent of assessment	Cognitive domains	Percent of assessment
Knowing	39	Knowing	36
Applying	41	Applying	39
Reasoning	20	Reasoning	25

Science content and cognitive domains

	Grade 4
Content domains	Percent of assessment
Life science	45
Physical science	35
Earth science	21

Grade 8	
Content domains	Percent of assessment
Biology	37
Chemistry	20
Physics	25
Earth science	18

Cognitive domains	Percent of assessment
Knowing	41
Applying	41
Reasoning	18

Cognitive domains	Percent of assessment
Knowing	32
Applying	44
Reasoning	24

NOTE: The percentages in this table are based on the number of score points and not the number of items. Some constructedresponse items are worth more than one score point. For the corresponding percentages based on the number of items, see table A-3 in appendix A. The content domains define the specific mathematics and science subject matter covered by the assessment, and the cognitive domains define the sets of thinking processes students are likely to use as they engage with the respective subject's content. Each of the subject content domains has several topic areas. Each topic area is presented as a list of objectives covered in a majority of participating education systems, at either grade 4 or 8 . However, the cognitive domains of mathematics and science are defined by the same three sets of expected processing behaviors-knowing, applying, and reasoning. Detail may not sum to totals because of rounding.
SOURCE: International Association for the Evaluation of Educational Achievement (IEA), Trends in International Mathematics and Science Study (TIMSS), 2011

Although each scale was created to have a mean of 500 and a standard deviation of 100 , the subject matter and the level of difficulty of items necessarily differ between subject, grade, and domains. Therefore, direct comparisons between scores across subjects, grades, and different domain types should not be made. (For details on why such comparisons are not warranted, see "Weighting, scaling, and plausible values" in appendix A.)

However, scores within a subject, grade, and domain (e.g., grade 4 mathematics content domain) are comparable over time. The TIMSS scale was established originally to have a mean of 500 set as the average of all of the countries and education systems that participated in TIMSS 1995 at the 4th and 8th grades. Successive TIMSS assessments since then (TIMSS 1999, 2003, 2007, and 2011) have scaled the achievement data so that scores are equivalent from assessment to assessment. ${ }^{7}$ Thus, for example, a score of 500 in 8th-grade mathematics in 2011 is equivalent to a score of 500 in 8th-grade mathematics in 2007, in 2003, in 1999, and in 1995. The same example would be true for 4th-grade mathematics scores as well as science scores at either grade. (For more information on how the TIMSS scale was created, see "Weighting, scaling, and plausible values" in appendix A.)

In addition to scale scores, TIMSS has also developed international benchmarks for each subject and grade. The TIMSS international benchmarks provide a way to interpret the scale scores and to understand how students' proficiency in mathematics and science varies along the TIMSS scale. The TIMSS benchmarks describe four levels of student achievement (Advanced, High, Intermediate, and Low) for each subject and grade, based on the kinds of skills and knowledge students at each score cutpoint would need to successfully answer the mathematics and science items.

The score cutpoints for the TIMSS benchmarks were set in 2003 based on the distribution of students along the TIMSS scale in previous administrations. ${ }^{8}$ More information on the development of the benchmarks and the procedures used to set the score cutpoints can be found in the TIMSS and PIRLS Methods and Procedures (Martin and Mullis 2011).

[^5]All differences described in this report are statistically significant at the .05 level. No statistical adjustments to account for multiple comparisons were used. Differences that are statistically significant are discussed using comparative terms such as "higher" and "lower." Differences that are not statistically significant are either not discussed or referred to as "not measurably different" or "not statistically significant." In the latter case, failure to find a difference as statistically significant does not necessarily mean that there was no difference. It could be that a real difference cannot be detected by the significance test because of small sample size or imprecise measurement in the sample. If the statistical test is significant, this means that there is convincing evidence (though no guarantee) of a real difference in the population. However, it is important to remember that statistically significant results do not necessarily identify those findings that have policy significance or practical importance. Supplemental tables providing all estimates and standard errors discussed in this report are available online at http://nces.ed.gov/pubsearch/pubsinfo.asp?pubid=2013009.

All data presented in this report are used to describe relationships between variables. These data are not intended, nor can they be used, to imply causality. Student performance can be affected by a complex mix of educational and other factors that are not examined here.

Nonresponse bias in the U.S. TIMSS samples

NCES Statistical Standards require a nonresponse bias analysis if school-level response rates fall below 85 percent, as they did for the 4th-grade school sample in TIMSS 2011. As a consequence, a nonresponse bias analysis was undertaken for the 4th-grade school sample similar to that used for TIMSS 2007 (Gonzales et al. 2008). ${ }^{9}$ Nonresponse bias analyses examined whether the participation status of schools (participant/non-participant) was related to seven school characteristics: region of the country in which the school was located (Northeast, Midwest, South, West); type of community served by the school (city, suburban, town, rural); whether the school was public or private; percentage of students eligible for free or reduced-price lunch; number of students enrolled in 4th-grade; total number of students; and percentage of students from minority backgrounds.
(See appendix A for a detailed description of this analysis.)
The findings indicate some potential for bias in the data arising from school control, enrollment, regional and community-type differences in participation, along with the fact that schools with higher percentages of minority students were less likely to participate. Specifically, public schools were much more
${ }^{9}$ NCES standards require a nonresponse bias analysis if school-level response rates fall below 85 percent, and the 4th-grade school sample in TIMSS 2011 had a school response rate of 84 percent. (Statistical Standard 2-2-2 found in National Center for Education Statistics 2002, available at: http://nces.ed.gov/ statprog/2002/stdtoc.asp.) The full text of the nonresponse bias analysis conducted for TIMSS 2011 will be included in a technical report released with the U.S. national dataset.
likely to participate than private schools, grade 4 schools in the Midwest region were more likely to participate than schools in the other regions, and rural schools were more likely to participate than schools in central cities. However, with the inclusion of substitute schools and school nonresponse adjustments applied to the weights, ${ }^{10}$ there were no measurable differences by school control, enrollment, and community type; only differences by region remained. Grade 4 schools with higher percentages of minority students were less likely to participate, but the measurable differences were small after substitution. Since TIMSS is conducted under a set of standard rules designed to facilitate international comparisons, the U.S. nonresponse bias analysis results were not used to adjust the U.S. data for this source of bias. While this may be possible at some later date, at present the variables identified above remain as potential sources of bias in the published estimates. See appendix A for additional details on the findings. The full text of the nonresponse bias analysis conducted for TIMSS 2011 will be included in the technical report released with the U.S. national dataset.

Further information

To assist the reader in understanding how TIMSS relates to the National Assessment of Educational Progress (NAEP), the primary source of national- and state-level data on U.S. students' mathematics and science achievement, NCES compared the form and content of the TIMSS and NAEP mathematics and science assessments. A summary of the results of this comparison is included in appendix C. Appendix D includes a list of TIMSS publications and resources published by NCES and the IEA. Standard errors for the estimates discussed in this report are available online at http://nces.ed.gov/pubsearch/pubsinfo.asp?pubid=2013009.
Detailed information on TIMSS can also be found on the NCES website at http://nces.ed.gov/timss and the international TIMSS website at http://www.timss.org.

[^6]Page intentionally left blank

Mathematics Performance in the United States and Internationally

Average scores in 2011

In mathematics, the U.S. national average score was 541 at grade 4 and 509 at grade 8 (tables 3 and 4). Both scores were higher than the TIMSS scale average, which is set at 500 for every administration of TIMSS at both grades. ${ }^{11}$

Among the 45 countries that participated at grade 4, the U.S. average mathematics score was among the top 8 (3 countries had higher averages and 4 had averages not measurably different from the United States). Thirty-seven countries had a lower average score than the United States.

Looking at all 57 education systems that participated at grade 4 (i.e., both countries and other education systems, including U.S. states that participated in TIMSS with individual state samples), the United States was among the top 15 education systems in average mathematics scores (8 education systems had higher averages and 6 were not measurably different). Singapore, Korea, Hong Kong-CHN, Chinese Taipei-CHN, Japan, Northern Ireland-GBR, North Carolina-USA, and Belgium (Flemish)-BEL had higher average scores than the United States; and Finland, Florida-USA, England-GBR, the Russian Federation, the Netherlands, and Denmark had average scores not measurably different from the U.S. average at grade 4. The United States outperformed 42 education systems.

At grade 8, among the 38 countries that participated in TIMSS, the U.S. average mathematics score was among the top 11 (4 countries had higher averages and 6 had averages not measurably different from the United States). Twenty-seven countries had lower average scores than the United States.

Looking at all 56 education systems that participated at grade 8, the United States was among the top 24 education systems in average mathematics scores (11 had higher averages and 12 were not measurably different). Korea, Singapore, Chinese Taipei-CHN, Hong Kong-CHN, Japan, Massachusetts-USA, Minnesota-USA, the Russian Federation, North Carolina-USA, Quebec-CAN, and Indiana-USA had higher average scores than the United States; and Colorado-USA, Connecticut-USA, Israel, Finland, Florida-USA, Ontario-CAN, England-GBR, Alberta-CAN, Hungary, Australia, Slovenia, and Lithuania had average scores not measurably different from the U.S. average at grade 8. The United States had a higher average mathematics score than 32 education systems.

[^7]Table 3. Average mathematics scores of 4th-grade students, by education system: 2011

Grade 4		Grade 4	
Education system	Average score	Education system	Average score
TIMSS scale average	500	New Zealand	486
Singapore ${ }^{1}$	6060	Spain	482
Korea, Rep. of	6050	Romania	482 (
Hong Kong-CHN ${ }^{1}$	602 0	Poland	481
Chinese Taipei-CHN	5910	Turkey	469 -
Japan	5850	Azerbaijan ${ }^{1,5}$	463 (
Northern Ireland-GBR ${ }^{2}$	5620	Chile	462 (1)
Belgium (Flemish)-BEL	5490	Thailand	458
Finland	545	Armenia	452 (
England-GBR	542	Georgia ${ }^{3,5}$	450 -
Russian Federation	542	Bahrain	436 -
United States ${ }^{1}$	541	United Arab Emirates	434 -
Netherlands ${ }^{2}$	540	Iran, Islamic Rep. of	431
Denmark ${ }^{1}$	537	Qatar ${ }^{1}$	413
Lithuania ${ }^{1,3}$	534 (1)	Saudi Arabia	410 -
Portugal	532 ©	Oman ${ }^{6}$	385
Germany	528 -	Tunisia ${ }^{6}$	359 (1)
Ireland	527 (Kuwait ${ }^{3,7}$	342 (1)
Serbia ${ }^{1}$	516 ()	Morocco ${ }^{7}$	335 (\%)
Australia	516	Yemen ${ }^{7}$	248
Hungary	515		
Slovenia	513 (Benchmarking	
Czech Republic	511 ()	education systems	
Austria	508	North Carolina-USA ${ }^{1,3}$	5540
Italy	508	Florida-USA ${ }^{3,8}$	545
Slovak Republic	507 (1)	Quebec-CAN	533 (
Sweden	504 (Ontario-CAN	518
Kazakhstan ${ }^{1}$	501 -	Alberta-CAN ${ }^{1}$	507
Malta	496 (Dubai-UAE	468 (1)
Norway ${ }^{4}$	495 (Abu Dhabi-UAE	417 (1)
Croatia ${ }^{1}$	490 (

© Average score is higher than U.S. average score.
\checkmark Average score is lower than U.S. average score.
${ }^{1}$ National Defined Population covers 90 to 95 percent of National Target Population (see appendix A).
${ }^{2}$ Met guidelines for sample participation rates only after replacement schools were included.
${ }^{3}$ National Target Population does not include all of the International Target Population (see appendix A).
${ }^{4}$ Nearly satisfied guidelines for sample participation rates after replacement schools were included.
${ }^{5}$ Exclusion rates for Azerbaijan and Georgia are slightly underestimated as some conflict zones were not covered and no official statistics were available.
${ }^{6}$ The TIMSS International Study Center has reservations about the reliability of the average achievement score because the percentage of students with achievement too low for estimation exceeds 15 percent, though it is less than 25 percent.
${ }^{7}$ The TIMSS International Study Center has reservations about the reliability of the average achievement score because the percentage of students with achievement too low for estimation exceeds 25 percent.
${ }^{8}$ National Defined Population covers less than 90 percent, but at least 77 percent, of National Target Population (see appendix A).
NOTE: Education systems are ordered by 2011 average score. Italics indicate participants identified and counted in this report as an education system and not as a separate country. Participants that did not administer TIMSS at the target grade are not shown; see the international report for their results. All U.S. state data are based on public school students only. All average scores reported as higher or lower than the U.S. average score are different at the .05 level of statistical significance. The tests for significance take into account the standard error for the reported difference. Thus, a small difference between the United States and one education system may be significant while a large difference between the United States and another education system may not be significant. The standard errors of the estimates are shown in table E-1 available at http://nces.ed.gov/pubsearch/pubsinfor.asp?pubid=2013009.
SOURCE: International Association for the Evaluation of Educational Achievement (IEA), Trends in International Mathematics and Science Study (TIMSS), 2011.

Table 4. Average mathematics scores of 8th-grade students, by education system: 2011

Grade 8		Grade 8	
Education system	Average score	Education system	Average score
TIMSS scale average	500	Chile	416
Korea, Rep. of	6130	Iran, Islamic Rep. of ${ }^{6}$	415
Singapore ${ }^{1}$	6110	Qatar ${ }^{6}$	410
Chinese Taipei-CHN	609 0	Bahrain ${ }^{6}$	409
Hong Kong-CHN	5860	Jordan ${ }^{6}$	406
Japan	570	Palestinian Nat'l Auth. ${ }^{6}$	404
Russian Federation ${ }^{1}$	5390	Saudi Arabia ${ }^{6}$	394
Israel ${ }^{2}$	516	Indonesia ${ }^{6}$	386
Finland	514	Syrian Arab Republic ${ }^{6}$	380
United States ${ }^{1}$	509	Morocco ${ }^{7}$	371
England-GBR ${ }^{3}$	507	Oman ${ }^{6}$	366 (
Hungary	505	Ghana ${ }^{7}$	331
Australia	505		
Slovenia	505	Benchmarking	
Lithuania ${ }^{4}$	502	education systems	
Italy	498 -	Massachusetts-USA ${ }^{1,4}$	561 0
New Zealand	488 -	Minnesota-USA ${ }^{4}$	5450
Kazakhstan	487 -	North Carolina-USA ${ }^{2,4}$	537 -
Sweden	484 -	Quebec-CAN	532 0
Ukraine	479 -	Indiana-USA ${ }^{1,4}$	522 0
Norway	475 ®	Colorado-USA ${ }^{4}$	518
Armenia	467 -	Connecticut-USA ${ }^{1,4}$	518
Romania	458 -	Florida-USA ${ }^{1,4}$	513
United Arab Emirates	456 -	Ontario-CAN ${ }^{1}$	512
Turkey	452 -	Alberta-CAN ${ }^{1}$	505
Lebanon	449 -	California-USA ${ }^{1,4}$	493
Malaysia	440 ®	Dubai-UAE	478
Georgia ${ }^{4,5}$	431 -	Alabama-USA ${ }^{4}$	466
Thailand	427 (Abu Dhabi-UAE	449
Macedonia, Rep. of ${ }^{6}$	426		
Tunisia	425 ®		

[^8]
Change in scores

Several education systems that participated in TIMSS 2011 also participated in the last administration of TIMSS in 2007 or in the first administration of TIMSS in 1995. Some education systems participated in both of these previous administrations. Comparing scores between previous administrations of TIMSS and the most recent administration provides perspective on change over time. ${ }^{12}$

[^9]
Change at grade 4 between 2007 and 2011

Among the 28 education systems that participated in both the 2007 and 2011 TIMSS mathematics assessments at grade 4, the average mathematics score increased in 12 education systems, including the United States. There was no measurable change in the other 16 education systems that participated in TIMSS in both these years, and in none did average scores decrease measurably (figure 1).

The U.S. increase in average score at grade 4 between 2007 and 2011 was 12 score points (from 529 to 541). Five education systems had larger increases than the United States during this time: Tunisia (32 points), the Islamic Republic of Iran (28 points), the Czech Republic (24 points), Dubai-UAE (24 points), and Norway (22 points). Despite experiencing larger gains than the United States between the two time points, all five of these education systems had lower average scores than the United States in 2011. Thus, none of these increases changed these education systems' standing relative to the United States between 2007 and 2011.

Figure 1. Change in average mathematics scores of 4th-grade students, by education system: 2007-2011 and 1995-2011

The increase in the U.S. average score between 2007 and 2011 moved the United States from scoring below EnglandGBR and the Russian Federation in 2007 to being not measurably different in 2011. It also moved the United States from being not measurably different from Lithuania and Germany in 2007 to scoring above them in 2011.

Change at grade 4 between 1995 and 2011

Among the 20 education systems that participated in both the 1995 and 2011 TIMSS mathematics assessments at grade 4, the average mathematics score increased in 13 education systems, including the United States, and decreased in 4 education systems (figure 1). In the other 3 education systems, there was no measurable change in the average grade 4 mathematics scores between 1995 and 2011.

The U.S. increase in the average mathematics score at grade 4 between 1995 and 2011 was 23 score points (from 518 to 541). Five education systems had larger increases than the

United States during this time: Portugal (90 points), EnglandGBR (58 points), Slovenia (51 points), Hong Kong-CHN (45 points), and the Islamic Republic of Iran (44 points). U.S. average performance at grade 4 went from above that of England-GBR in 1995 to being not measurably different in 2011. ${ }^{13}$ None of the other education systems' increases changed their standing relative to the United States between 1995 and 2011.

Average scores decreased during this time at grade 4 in the Czech Republic (30 points), Austria (22 points), Quebec-CAN (17 points), and the Netherlands (9 points). U.S. average performance at grade 4 went from below the averages in the Czech Republic, Austria, and Quebec-CAN in 1995 to higher than their averages in 2011, and from below the average in the Netherlands in 1995 to being not measurably different in 2011.
${ }^{13}$ More than three-quarters of England's increase (47 points) occurred between 1995 and 2003.

Figure 1. Change in average mathematics scores of 4th-grade students, by education system: 2007-2011 and 1995-2011—Continued

Grade 4														
Average score				Benchmarking education systems	Change in average score ${ }^{1}$									
1995	2007	2011			-17*		14*							
550 0	519 -	533	-	Quebec-CAN										
489 -	512 ()	518	-	Ontario-CAN										
523	505 -	507		Alberta-CAN ${ }^{2}$		-17								
	444 -	468		Dubai-UAE										
					-40	-20	0	20	40	60	80	100		

[^10]${ }^{*} p<.05$. Change in average scores is significant.
${ }^{1}$ The change in average score is calculated by subtracting the 2007 or 1995 estimate, respectively, from the 2011 estimate using unrounded numbers.
${ }^{2}$ National Defined Population covers 90 to 95 percent of National Target Population for 2011 (see appendix A).
${ }^{3}$ Met guidelines for sample participation rates only after replacement schools were included for 2011.
${ }^{4}$ National Target Population does not include all of the International Target Population for 2011 (see appendix A).
${ }^{5}$ Nearly satisfied guidelines for sample participation rates after replacement schools were included for 2011.
${ }^{6}$ Exclusion rates for Azerbaijan and Georgia are slightly underestimated as some conflict zones were not covered and no official statistics were available for 2011.
${ }^{7}$ The TIMSS International Study Center has reservations about the reliability of the average achievement score because the percentage of students with achievement too low for estimation in 2011 exceeds 15 percent, though it is less than 25 percent.
NOTE: Education systems are ordered by 2011 average scores. Italics indicate participants identified and counted in this report as an education system and not as a separate country. Data are not shown for some education systems because comparable data from previous cycles are not available. Participants that did not administer TIMSS at the target grade are not shown; see the international report for their results. All U.S. state data are based on public school students only.
For 1995, Korea, Portugal, and Ontario-CAN had National Defined Population covering 90 to 95 percent of National Target Population; England-GBR had National Defined Population that covered less than 90 percent of National Target Population (but at least 77 percent) and met guidelines for sample participation rates only after replacement schools were included; Netherlands, Australia, and Austria did not satisfy guidelines for sample participation rates. For 2007, the United States, Quebec-CAN, Ontario-CAN, and Alberta-CAN had National Defined Population covering 90 to 95 percent of National Target Population; the United States and Denmark met guidelines for sample participation rates only after replacement schools were included; the Netherlands and Dubai-UAE nearly satisfied guidelines for sample participation rates after replacement schools were included; Georgia had a National Target Population that did not include all of the International Target Population; Dubai-UAE tested the same cohort of students as other countries, but later in the assessment year at the beginning of the next school year.
All average scores reported as higher or lower than the U.S. average score are different at the .05 level of statistical significance. The tests for significance take into account the standard error for the reported difference. Thus, a small difference between the United States and one education system may be significant while a large difference between the United States and another education system may not be significant. Detail may not sum to totals because of rounding. The standard errors of the estimates are shown in table E-3 available at http://nces.ed.gov/pubsearch/pubsinfo.asp?pubid=2013009. SOURCE: International Association for the Evaluation of Educational Achievement (IEA), Trends in International Mathematics and Science Study (TIMSS), 1995, 2007, and 2011
\&

Change at grade 8 between 2007 and 2011

At grade 8, among the 34 education systems that participated in both the 2007 and 2011 TIMSS mathematics assessments, the average mathematics score increased in 10 education systems and decreased in 6 education systems (figure 2). In the rest, including the United States, there was no measurable change.

The education systems in which 8th-graders' average scores increased between 2007 and 2011 were the Palestinian National Authority (37 points), the Russian Federation (27 points), Georgia (22 points), Italy (19 points), Singapore (18 points), Ukraine (17 points), Dubai-UAE (17 points), Korea (16 points), Bahrain (11 points), and Chinese Taipei-CHN (11 points). The 27-point increase in the Russian Federation moved
their 8th-graders from on a par with their U.S. peers in 2007 to higher than the U.S. national average in 2011. The increases in the other education systems did not change their standing relative to the United States. ${ }^{14}$

Scores decreased during this time at grade 8 in Malaysia (34 points), Jordan (21 points), the Syrian Arab Republic (15 points), Thailand (14 points), Hungary (12 points), and Sweden (7 points). None of these decreases changed these education systems' standing relative to the United States between 2007 and 2011.
${ }^{14}$ Although Australia and Slovenia did not have measurable changes in their average scores, both moved from scoring below the United States in 2007 to being not measurably different in 2011.

Figure 2. Change in average mathematics scores of 8th-grade students, by education system: 2007-2011 and 1995-2011

Change at grade 8 between 1995 and 2011

At grade 8, among the 20 education systems that participated in both the 1995 and 2011 TIMSS mathematics assessments, the average mathematics score increased in 8 education systems, including the United States, and decreased in 7 education systems (figure 2). In the rest, there was no measurable change between 1995 and 2011.

The U.S. increase in average mathematics score at grade 8 between 1995 and 2011 was 17 score points (from 492 to 509). Only Korea (32 points) had a larger increase than the United States during this time. However, the increases in both the Lithuanian and the U.S. average scores meant that the U.S. average performance went from above that of Lithuania in 1995 to being not measurably different in 2011. None of the other education systems' increases changed their standing relative to the United States between 1995 and 2011.

Average scores decreased at grade 8 during this time in Sweden (55 points), Quebec-CAN (25 points), Norway (24 points), Alberta-CAN (22 points), Hungary (22 points), Romania (16 points), and Japan (11 points). As a result, the average U.S. performance at grade 8 went from below that of Sweden in 1995 to higher in 2011; from below that of Hungary and Alberta-CAN in 1995 to not measurably different in 2011; and from being not measurably different from Norway in 1995 to higher in 2011. ${ }^{15}$
${ }^{15}$ Although the average score of Australia and New Zealand did not decrease measurably, New Zealand's standing relative to the United States moved from being not measurably different in 1995 to scoring below the United States in 2011; and Australia's standing relative to the United States moved from being above the United States in 1995 to being not measurably different in 2011.

Figure 2. Change in average mathematics scores of 8th-grade students, by education system: 2007-2011 and 1995-2011—Continued

0 Score is higher than U.S. score.
(1) Score is lower than U.S. score.

- Change from 2007 to 2011.
- Change from 1995 to 2011.
\# Rounds to zero.
${ }^{*} p<.05$. Change in average scores is significant.
${ }^{1}$ The change in average score is calculated by subtracting the 2007 or 1995 estimate, respectively, from the 2011 estimate using unrounded numbers.
${ }^{2}$ National Defined Population covers 90 to 95 percent of National Target Population for 2011 (see appendix A).
${ }^{3}$ Nearly satisfied guidelines for sample participation rates after replacement schools were included for 2011.
${ }^{4}$ National Target Population does not include all of the International Target Population for 2011 (see appendix A).
${ }^{5}$ Exclusion rates for Georgia are slightly underestimated as some conflict zones were not covered and no official statistics were available for 2011.
${ }^{6}$ The TIMSS International Study Center has reservations about the reliability of the average achievement score because the percentage of students with achievement too low for estimation in 2011 exceeds 15 percent, though it is less than 25 percent
NOTE: Education systems are ordered by 2011 average scores. Italics indicate participants identified and counted in this report as an education system and not as a separate country. Data are not shown for some education systems because comparable data from previous cycles are not available. Participants that did not administer TIMSS at the target grade are not shown; see the international report for their results. All U.S. state data are based on public school students only. For 1995, Lithuania's National Target Population did not include all of the International Target Population; the Russian Federation and Lithuania had a National Defined Population that covered 90 to 95 percent of National Target Population; England-GBR had a National Defined Population that covered less than 90 percent of National Target Population (but at least 77 percent); the United States, England-GBR, and Minnesota-USA met guidelines for sample participation rates only after replacement schools were included. For 2007, Lithuania, Georgia, and Indonesia had National Target Populations that did not include all of the International Target Population; Massachusetts-USA, Quebec-CAN, and Ontario-CAN had National Defined Population that covered 90 to 95 percent of National Target Population; Hong Kong-CHN, England-GBR, and Minnesota-USA met guidelines for sample participation rates only after replacement schools were included; Dubai-UAE nearly satisfied guidelines for sample participation rates after replacement schools were included.
All average scores reported as higher or lower than the U.S. average score are different at the .05 level of statistical significance. The tests for significance take into account the standard error for the reported difference. Thus, a small difference between the United States and one education system may be significant while a large difference between the United States and another education system may not be significant. Detail may not sum to totals because of rounding. The standard errors of the estimates are shown in table E-4 available at http://nces.ed.gov/pubsearch/pubsinfo.asp?pubid=2013009.
SOURCE: International Association for the Evaluation of Educational Achievement (IEA), Trends in International Mathematics and Science Study (TIMSS), 1995, 2007, and 2011

Content domain scores in 2011

In addition to overall average mathematics scores, TIMSS provides average scores by specific mathematics topics called content domains. At grade 4, TIMSS tested student knowledge in three content domains: number, geometric shapes and measures, and data display. At grade 8, TIMSS tested student knowledge in four content domains: number, algebra, geometry, and data and chance.

At grade 4, the U.S. average was higher than the TIMSS scale average of 500 in all three content domains (table 5). In comparison with other education systems, U.S. 4th-graders performed better on average in number and data display than in geometric shapes and measures. That is, fewer education systems had higher average scores than the United States in these two domains than in geometric shapes and measures. In both number and data display, 8 education systems had higher average scores than the United States, whereas 12 education systems had a higher average score than the United States in the geometric shapes and measures

At grade 8, the U.S. average was higher than the TIMSS scale average of 500 in three of the four 8th-grade content domains and below the TIMSS scale average in the fourthgeometry (table 6). In comparison with other education systems, U.S. 8th-graders performed better on average in algebra than in the other three domains. That is, fewer education systems had higher average scores than the United States in algebra than in data and chance, number, or geometry. In algebra, 9 education systems had a higher average score than the United States, whereas in both number and data and chance 14 education systems had higher average scores, and in geometry 21 education systems had a higher average score.

16

Table 5. Average mathematics content domain scores of 4th-grade students, by education system: 2011

Education system	Number	Geometric shapes and measures	Data display	Education system	Number	Geometric shapes and measures	Data display
Singapore ${ }^{1}$	619 0	5890	5880	Azerbaijan ${ }^{1,4}$	491 -	437 (\%)	407 -
Korea, Rep. of	606	607 -	6030	Norway ${ }^{5}$	488	507 (494 (
Hong Kong-CHN ${ }^{1}$	6040	6050	5930	Spain	487 (476 -	479 -
Chinese Taipei-CHN	5990	5730	600	Armenia	484	424 (386
Japan	5840	5890	590	New Zealand	483	483 -	491 -
Northern Ireland-GBR ${ }^{2}$	5660	5600	5550	Poland	480	475	489
Belgium (Flemish)-BEL	5520	5520	536	Turkey	477 (1)	447 (1)	478
Finland	545	5430	551	Georgia ${ }^{3,4}$	473	411 (433 -
Russian Federation	545	542	533	Thailand	464 (1)	437 (467 (
Netherlands ${ }^{2}$	543	524 -	5590	Chile	462 (1)	455	465
United States ${ }^{1}$	543	535	545	Iran, Islamic Rep. of	440 -	435 (397 (-)
England-GBR	539	5450	549	Bahrain	439 -	422 (1)	442 (
Lithuania ${ }^{1,3}$	537	531	526	United Arab Emirates	438	418	437 (
Denmark ${ }^{1}$	534	5480	532	Qatar ${ }^{1}$	417 (399	416
Ireland	533	520	523	Saudi Arabi	410	404	403
Serbia ${ }^{1}$	529	497 (503 (Tunisia ${ }^{6}$	390	329	300
Portugal	522 (1)	5480	548	Oman ${ }^{6}$	384	376	381
Germany	520	536	546	Morocco ${ }^{7}$	340	350	271 -
Hungary	515	520 (510 -	Kuwait ${ }^{3,7}$	333	321 (1)	347 (
Kazakhstan ${ }^{1}$	515	491 -	476	Yemen ${ }^{7}$	261 (1)	193 (7)	204
Slovak Republic	511	500	504 -	Benchmarking education systems			
Italy	510 -	513 (495 -				
Czech Republic	509	513	519 (North Carolina-USA ${ }^{1,3}$	5640	536	5580
Australia	508 (534	515 (Florida-USA ${ }^{3,8}$	548	5460	541
Austria	506	512	515	Quebec-CAN	531 (1)	536	538
Slovenia	503	526	532	Alberta-CAN ${ }^{1}$	505	496 (524 (
Sweden	500	500	523 (Ontario-CAN	504 (535	536
Malta	498	487 (498 (Dubai-UAE	474 -	449 (471 -
Romania	497 (469 (457 (Abu Dhabi-UAE	420	401 -	418
Croatia ${ }^{1}$	491 (490	488 -				

© Average score is higher than U.S. score.
© Average score is lower than U.S. score.
${ }^{1}$ National Defined Population covers 90 to 95 percent of National Target Population (see appendix A).
${ }^{2}$ Met guidelines for sample participation rates only after replacement schools were included.
${ }^{3}$ National Target Population does not include all of the International Target Population (see appendix A).
${ }^{4}$ Exclusion rates for Azerbaijan and Georgia are slightly underestimated as some conflict zones were not covered and no official statistics were available.
${ }^{5}$ Nearly satisfied guidelines for sample participation rates after replacement schools were included.
${ }^{6}$ The TIMSS International Study Center has reservations about the reliability of the average achievement score because the percentage of students with achievement too low for estimation exceeds 15 percent, though it is less than 25 percent.
${ }^{7}$ The TIMSS International Study Center has reservations about the reliability of the average achievement score because the percentage of students with achievement too low for estimation exceeds 25 percent.
${ }^{8}$ National Defined Population covers less than 90 percent, but at least 77 percent, of National Target Population (see appendix A).
NOTE: Education systems are ordered by 2011 average score in number domain. Italics indicate participants identified and counted in this report as an education system and not as a separate country. Participants that did not administer TIMSS at the target grade are not shown; see the international report for their results. All U.S. state data are based on public school students only. All average scores reported as higher or lower than U.S. average score are different at the . 05 level of statistical significance. The tests for significance take into account the standard error for the reported difference. Thus, a small difference between the United States and one education system may be significant while a large difference between the United States and another education system may not be significant. The standard errors of the estimates are shown in table E-5 available at http://nces.ed.gov/pubsearch/pubsinfor.asp?pubid=2013009.
SOURCE: International Association for the Evaluation of Educational Achievement (IEA), Trends in International Mathematics and Science Study (TIMSS), 2011.

Table 6. Average mathematics content domain scores of 8th-grade students, by education system: 2011

Education system	Number	Algebra	Geometry	Data and chance	Education system	Number	Algebra	Geometry	Data and chance
Korea, Rep. of	618 0	617 D	6120	6160	Macedonia, Rep. of ${ }^{6}$	418 -	448 (419 -	389 (
Singapore ${ }^{1}$	6110	6140	6090	6070	Chile	413	403 -	419	426 (
Chinese Taipei-CHN	5980	6280	6250	5840	Qatar ${ }^{6}$	408 -	425 (387	390
Hong Kong-CHN	5880	5830	5970	5810	Iran, Islamic Rep. of ${ }^{6}$	402 ®	422 (437 (393 (
Japan	5570	5700	5860	5790	Palestinian Nat'l Auth. ${ }^{6}$	400 -	419	416	368 (
Russian Federation ${ }^{1}$	5340	5560	5330	511 (1)	Bahrain ${ }^{6}$	397	424 -	398 -	407 -
Finland	5270	492 (1)	5020	5420	Saudi Arabia ${ }^{6}$	393 (399	364	387 (
Israel ${ }^{2}$	518	521	4960	515	Jordan ${ }^{6}$	390	432 (1)	407 (379
United States ${ }^{1}$	514	512	485	527	Morocco ${ }^{7}$	379	357 (1)	390	332 (1)
Australia	513	489 (4990	534	Indonesia ${ }^{6}$	375	392	377	376
England-GBR ${ }^{3}$	512	489	4980	5430	Syrian Arab Republic ${ }^{6}$	373	391	386	343
Slovenia	511	493 -	5040	518 (1)	Oman ${ }^{6}$	351 -	383	377 (342 (
Hungary	510	496	5010	517	Ghana ${ }^{7}$	321 (1)	358 (315	296
Sweden	504 (459	456	504 (
Lithuania ${ }^{4}$	501 (492 -	5000	515	Benchmarking education systems				
Italy	496	491 (5120	499	Massachusetts-USA ${ }^{1,4}$	567 -	5590	5480	5840
Norway	492 -	432	461 -	513	Minnesota-USA ${ }^{4}$	5560	5430	5150	5710
New Zealand	492 -	472 (483	513	North Carolina-USA ${ }^{2,4}$	5470	5370	5150	5480
Kazakhstan	479	506	491	444 (1)	Quebec-CAN	5430	516	5290	5490
Armenia	474 -	496 (450 -	376	Indiana-USA ${ }^{1,4}$	5280	520	4980	5450
Ukraine	472	487 (1)	476	471	Connecticut-USA ${ }^{1,4}$	5270	510	490	5460
United Arab Emirates	459 -	468 (431 -	440	Alberta-CAN ${ }^{1}$	5230	485 -	485	529
Lebanon	451 -	471 -	447 (1)	393	Colorado-USA ${ }^{4}$	521	512	5050	5400
Malaysia	451 (430 ®	432 -	429	Ontario-CAN ${ }^{1}$	519	497 (5120	531
Romania	448 -	477 (453 -	429	Florida-USA ${ }^{1,4}$	517	513	499	528
Georgia ${ }^{4,5}$	435 -	450 -	4068	392	California-USA ${ }^{1,4}$	492	509	454 (495 (
Turkey	435 -	455	454 -	467	Dubai-UAE	479	489 ®	453 (468 (
Tunisia	431 -	419 (4268	398	Alabama-USA ${ }^{4}$	463 (471 (1)	443 (480
Thailand	425 -	4258	415	431	Abu Dhabi-UAE	452 (459	424 -	434 -

© Average score is higher than U.S. average score.
\checkmark Average score is lower than U.S. average score.
${ }^{1}$ National Defined Population covers 90 to 95 percent of National Target Population (see appendix A).
${ }^{2}$ National Defined Population covers less than 90 percent, but at least 77 percent, of National Target Population (see appendix A).
${ }^{3}$ Nearly satisfied guidelines for sample participation rates after replacement schools were included.
${ }^{4}$ National Target Population does not include all of the International Target Population (see appendix A).
${ }^{5}$ Exclusion rates for Georgia are slightly underestimated as some conflict zones were not covered and no official statistics were available.
${ }^{6}$ The TIMSS International Study Center has reservations about the reliability of the average achievement score because the percentage of students with achievement too low for estimation exceeds 15 percent, though it is less than 25 percent.
${ }^{7}$ The TIMSS International Study Center has reservations about the reliability of the average achievement score because the percentage of students with achievement too low for estimation exceeds 25 percent.
NOTE: Education systems are ordered by 2011 average score in number domain. Italics indicate participants identified and counted in this report as an education system and not as a separate country. Participants that did not administer TIMSS at the target grade are not shown; see the international report for their results. All U.S. state data are based on public school students only. All average scores reported as higher or lower than U.S. average score are different at the . 05 level of statistical significance. The tests for significance take into account the standard error for the reported difference. Thus, a small difference between the United States and one education system may be significant while a large difference between the United States and another education system may not be significant. The standard errors of the estimates are shown in table E-6 available at http://nces.ed.gov/pubsearch/pubsinfor.asp?pubid=2013009.
SOURCE: International Association for the Evaluation of Educational Achievement (IEA), Trends in International Mathematics and Science Study (TIMSS), 2011.

Performance on the TIMSS international benchmarks

The TIMSS international benchmarks provide a way to understand how students' proficiency in mathematics varies along the TIMSS scale (table 7). TIMSS defines four levels of student achievement: Advanced, High, Intermediate, and Low. The benchmarks can then be used to describe the kinds of skills and knowledge students at each score cutpoint would need to successfully answer the mathematics items included in the assessment. The descriptions of the benchmarks differ between the two grade levels, as the mathematical skills and knowledge needed to respond to the assessment items reflect the nature, difficulty, and emphasis of the expectations at each grade.

In 2011, higher percentages of U.S. 4th-graders performed at or above each of the four TIMSS international benchmarks than the international medians. ${ }^{16}$ For example, 13 percent of U.S. 4th-graders performed at or above the Advanced benchmark (625) compared to the international median of 4 percent. Students at the Advanced benchmark demonstrated an ability to apply their understanding and knowledge to a variety of relatively complex mathematical situations, explain
${ }^{16}$ The international median is the median percentage for all IEA member countries (see the inset box on page 1 for IEA member countries). Thus, the international median at each benchmark represents the percentage at which half of the participating IEA member countries have that percentage of students at or above the median and half have that percentage of students below the median. For example, the Low international benchmark median of 90 percent at grade 4 indicates that half of the countries have 90 percent or more of their students who met the Low benchmark, and half have less than 90 percent of their students who met the Low benchmark.

Table 7. Description of TIMSS international mathematics benchmarks, by grade: 2011

Benchmark (score cutpoint)	Students can apply their understanding and knowledge in a variety of relatively complex situations and explain their reasoning. Advanced (625) They can solve a variety of multi-step word problems involving whole numbers including proportions. Students at this level show an increasing understanding of fractions and decimals. Students can apply geometric knowledge of a range of two- and three-dimensional shapes in a variety of situations. They can draw a conclusion from data in a table and justify their conclusion.
High (550) Students can apply their knowledge and understanding to solve problems. Students can solve word problems involving operations with whole numbers. They can use division in a variety of problem situations. They can use their understanding of place value to solve problems. Students can extend patterns to find a later specified term. Students demonstrate understanding of line symmetry and geometric properties. Students can interpret and use data in tables and graphs tosolve problems. They can use information in pictographs and tally charts to complete bar graphs. Intermediate Students can apply basic mathematical knowledge in straightforward situations. Students at this level demonstrate an understanding of whole numbers and some understanding of fractions. Students can visualize three-dimensional shapes (475)Stum two-dimensional representations. They can interpret bar graphs, pictographs, and tables to solve simple problems.	
Studs have some basic mathematical knowledge. Students can add and subtract whole numbers. They have some recognition of parallel and perpendicular lines, familiar geometric shapes, and coordinate maps. They can read and complete simple bar graphs and tables.	

	Grade 8
Advanced (625)	Students can reason with information, draw conclusions, make generalizations, and solve linear equations. Students can solve a variety of fraction, proportion, and percent problems and justify their conclusions. Students can express generalizations algebraically and model situations. They can solve a variety of problems involving equations, formulas, and functions. Students can reason with geometric figures to solve problems. Students can reason with data from several sources or unfamiliar representations to solve multi-step problems.
$\begin{aligned} & \text { High } \\ & (550) \end{aligned}$	Students can apply their understanding and knowledge in a variety of relatively complex situations. Students can use information from several sources to solve problems involving different types of numbers and operations. Students can relate fractions, decimals, and percents to each other. Students at this level show basic procedural knowledge related to algebraic expressions. They can use properties of lines, angles, triangles, rectangles, and rectangular prisms to solve problems. They can analyze data in a variety of graphs.
Intermediate (475)	Students can apply basic mathematical knowledge in straightforward situations. Students can solve problems involving decimals, fractions, proportions, and percentages. They understand simple algebraic relationships. Students can relate a two-dimensional drawing to a three-dimensional object. They can read, interpret, and construct graphs and tables. They recognize basic notions of likelihood.
Low (400)	Students have some knowledge of whole numbers and decimals, operations,
NOTE: Score cutpoints for the international benchmarks are determined through scale anchoring. Scale anchoring involves selecting benchmarks (scale points) on the achievement scales to be described in terms of student performance, and then identifying items that students scoring at the anchor points can answer correctly. The score cutpoints are set at equal intervals along the achievement scales. The score cutpoints were selected to be as close as possible to the standard percentile cutpoints (i.e., 90 th, 75 th, 50 th, and 25 th percentiles). More information on the setting of the score cutpoints can be found in appendix A and Mullis et al. (2012). SOURCE: International Association for the Evaluation of Educational Achievement (IEA), Trends in International Mathematics and Science Study (TIMSS), 2011.	

Figure 3．Percentage of 4th－grade students reaching the TIMSS international benchmarks in mathematics，by education system： 2011

See notes at end of table．

Figure 3. Percentage of 4th-grade students reaching the TIMSS international benchmarks in mathematics, by education system: 2011-Continued

Advanced benchmark
High benchmark
\square Intermediate benchmark
\square Low benchmark
\# Rounds to zero.
${ }^{*} p<.05$. Percentage is significantly different from the U.S. percentage at the same benchmark.
${ }^{1}$ National Defined Population covers 90 to 95 percent of National Target Population (see appendix A).
${ }^{2}$ Met guidelines for sample participation rates only after replacement schools were included.
${ }^{3}$ National Target Population does not include all of the International Target Population (see appendix A).
${ }^{4}$ Exclusion rates for Azerbaijan and Georgia are slightly underestimated as some conflict zones were not covered and no official statistics were available.
${ }^{5}$ Nearly satisfied guidelines for sample participation rates after replacement schools were included.
${ }^{6}$ The TIMSS International Study Center has reservations about the reliability of the average achievement score because the percentage of students with achievement too low for estimation exceeds 15 percent, though it is less than 25 percent.
${ }^{7}$ The TIMSS International Study Center has reservations about the reliability of the average achievement score because the percentage of students with achievement too low for estimation exceeds 25 percent.
${ }^{8}$ National Defined Population covers less than 90 percent, but at least 77 percent of National Target Population (see appendix A).
NOTE: Education systems are ordered by percentage at Advanced international benchmark. Italics indicate participants identified and counted in this report as an education system and not as a separate country. The TIMSS international median represents all participating TIMSS education systems, including the United States, shown in the main part of the figure; benchmarking education systems are not included in the median. Participants that did not administer TIMSS at the target grade are not shown; see the international report for their results. All U.S. state data are based on public school students only. The tests for significance take into account the standard error for the reported difference. Thus, a small difference between the United States and one education system may be significant while a large difference between the United States and another education system may not be significant. The standard errors of the estimates are shown in table E-7 available at http://nces.ed.gov/pubsearch/pubsinfor.asp?pubid=2013009.
SOURCE: International Association for the Evaluation of Educational Achievement (IEA), Trends in International Mathematics and Science Study (TIMSS), 2011.
their reasoning, and draw and justify conclusions from data (see description in table 7).

The percentage of 4th-graders performing at or above the Advanced international mathematics benchmark was higher than in the United States in 7 education systems; was not different in 4 education systems; and was lower than in the United States in 45 education systems.

Singapore, Korea, Hong Kong-CHN, Chinese Taipei-CHN, Japan, Northern Ireland-GBR, and England-GBR had a higher percentage of students performing at or above the Advanced international mathematics benchmark than the United States at grade 4; and North Carolina-USA, the Russian Federation, Florida-USA, and Finland had percentages not measurably different from the U.S. percentage.

Similar to their 4th-grade counterparts, higher percentages of U.S. 8th-graders performed at or above each of the four TIMSS international benchmarks than the international medians (figure 4). For example, 7 percent of U.S. 8thgraders performed at or above the Advanced benchmark
(625) compared to the international median of 3 percent. Students at the Advanced benchmark demonstrated an ability to reason with information, draw conclusions, make generalizations, and solve linear equations and multi-step problems (see description in table 7).

The percentage of 8th-graders performing at or above the Advanced international mathematics benchmark was higher than the United States in 11 education systems; was not different in 13 education systems; and was lower than the United States in 31 education systems.

Chinese Taipei-CHN, Singapore, Korea, Hong Kong-CHN, Japan, Massachusetts-USA, the Russian Federation, North Carolina-USA, Minnesota-USA, Israel, and Connecticut-USA had a higher percentage of students performing at or above the Advanced international mathematics benchmark than the United States at grade 8. Australia, England-GBR, FloridaUSA, Colorado-USA, Hungary, Turkey, Indiana-USA, QuebecCAN, Romania, Lithuania, New Zealand, Dubai-UAE, and California-USA had percentages not measurably different from the U.S. percentage.

Figure 4. Percentage of 8th-grade students reaching the TIMSS international benchmarks in mathematics, by education system: 2011

Education system	Percentage of students reaching each international benchmark				
		Advanced	High	Intermediate	Low
		(625)	(550)	(475)	(400)
Chinese Taipei-CHN	$\square \square \square$	49 *	73 *	88 *	96 *
Singapore ${ }^{1}$		48 *	78 *	92 *	99 *
Korea, Rep. of	■ - - - -	47 *	77 *	93 *	99 *
Hong Kong-CHN	$\square \square \square \square$	34 *	71*	89 *	97 *
Japan	$\square \square \square \square \square \square$	27 *	61 *	87 *	97 *
Russian Federation ${ }^{1}$	■ [-	14 *	47*	78 *	95 *
Israel 2	$\square \square \square \square \square$	12 *	40 *	68	87 *
Australia	\square	9	29	63	89 *
England-GBR ${ }^{3}$	$\square \square \square \square \square \square \square \square$	8	32	65	88
Hungary	\square	8	32	65	88 *
Turkey	\square	7	20 *	40 *	67 *
United States ${ }^{1}$	\square	7	30	68	92
Romania	$\square \square$	5	19 *	44 *	71 *
Lithuania ${ }^{4}$	$\square \square \square$	5	29	64	90
New Zealand	$\square \square$	5	24 *	57 *	84 *
Ukraine	$\square \square$	5 *	22 *	53 *	81 *
Slovenia	\square	4*	27	67	93
Finland	$\square \square$	4 *	30	73 *	96 *
Italy		3*	24 *	64 *	90
Armenia		3*	18 *	49 *	76 *
Kazakhstan	$\square \square$	3*	23 *	57 *	85 *
Macedonia, Rep. of ${ }^{5}$	\square	3 *	12 *	35 *	61 *
Georgia ${ }^{4,6}$	$\square \square \square$	3*	13 *	36 *	62 *
United Arab Emirates	$\square \square \square \square$	2*	14 *	42 *	73 *
Qatar ${ }^{5}$	$\square \square$	2*	10 *	29 *	54 *
Iran, Islamic Rep. of ${ }^{5}$	$\square \square$	2 *	8*	26 *	55 *
Malaysia	$\square \square$	2*	12 *	36 *	65 *
Thailand	$\square \square \square$	2 *	8*	28 *	62 *
Bahrain ${ }^{5}$		1 *	8*	26 *	53 *
Sweden		1*	16 *	57 *	89 *
Palestinian Nat'l Auth. ${ }^{5}$	$\square \square$	1*	7*	25 *	52 *
Lebanon	$\square \square$	1*	9*	38 *	73 *
Norway	$\square \square$	1*	12 *	51 *	87 *
Saudi Arabia ${ }^{5}$	$\square \square \square$	1 *	5 *	20 *	47 *
Chile	$\square \square$	1*	5*	23 *	57 *
Jordan ${ }^{5}$	\square	\#*	6 *	26 *	55 *
Tunisia	$\square \square$	\#*	5*	25 *	61 *
Oman ${ }^{5}$	$\square \square$	\#*	4*	16 *	39 *
Syrian Arab Republic ${ }^{5}$	$\square \square$	\#*	3*	17 *	43 *
Indonesia ${ }^{5}$	\square	\#*	2 *	15 *	43 *
Morocco ${ }^{7}$	$\square \square$	\#*	2*	12 *	36 *
Ghana 7	$1-\square$	\#*	1*	5 *	21 *
International Median	$\square \square \square \square \square$	3*	17 *	46 *	75 *
	$\begin{array}{llllll}0 & 20 & 40 & 60 & 80 & 100\end{array}$				
	Percent				

See notes at end of table.

Figure 4. Percentage of 8th-grade students reaching the TIMSS international benchmarks in mathematics, by education system: 2011-Continued

[^11]SOURCE: International Association for the Evaluation of Educational Achievement (IEA), Trends in International Mathematics and Science Study (TIMSS), 2011.

Average scores of male and female students

In 2011, at grade 4, the U.S. average score in mathematics was 9 score points higher for males than for females (figure 5). Among all 57 education systems that participated in TIMSS at grade 4, there were 30 education systems that showed a significant difference in the average mathematics scores of males and females: 25 in favor of males (including FloridaUSA and North Carolina-USA, as well as the nation as a whole) and 5 in favor of females. The difference in average scores between males and females ranged from 35 score points in Kuwait in favor of females to 12 score points in North Carolina-USA in favor of males. In 27 education systems, there was no measurable difference between the average mathematics scores of males and females.

At grade 8, there was no statistically significant difference between the average scores of U.S. males and females (figure 6). Among all 56 education systems that participated in TIMSS at grade 8, there were 21 education systems that showed a significant difference in the average mathematics scores of males and females: 8 in favor of males (including Indiana-USA) and 13 in favor of females. The difference in average scores between males and females ranged from 63 score points in Oman in favor of females to 23 score points in Ghana in favor of males. In 35 education systems, there was no statistical difference between the average mathematics scores of males and females (including the U.S. states of Alabama, California, Colorado, Connecticut, Florida, Massachusetts, Minnesota, and North Carolina, as well as the nation as a whole).

Figure 5. Difference in average mathematics scores of 4th-grade students, by sex and education system: 2011

Benchmarking education systems	Difference in favor of females				Difference in favor of males				
North Carolina-USA ${ }^{1,4}$ Quebec-CAN Alberta-CAN ${ }^{1}$ Florida-USA ${ }^{4,8}$ Ontario-CAN Dubai-UAE Abu Dhabi-UAE						12			
						11			
						9			
					-	7			
					$\square 6$	6			
					$\sqsupset 4$				
				16					
	80	60	40	20		20	40	60	80
	Difference in average mathematics scores								

Male-female difference in average mathematics scores is statistically significant.
\square Male-female difference in average mathematics scores is not measurably different.
\# Rounds to zero.
${ }^{1}$ National Defined Population covers 90 to 95 percent of National Target Population (see appendix A).
${ }^{2}$ Met guidelines for sample participation rates only after replacement schools were included.
${ }^{3}$ Nearly satisfied guidelines for sample participation rates after replacement schools were included.
${ }^{4}$ National Target Population does not include all of the International Target Population (see appendix A).
${ }^{5}$ Exclusion rates for Azerbaijan and Georgia are slightly underestimated as some conflict zones were not covered and no official statistics were available.
${ }^{6}$ The TIMSS International Study Center has reservations about the reliability of the average achievement score because the percentage of students with achievement too low for estimation exceeds 25 percent.
${ }^{7}$ The TIMSS International Study Center has reservations about the reliability of the average achievement score because the percentage of students with achievement too low for estimation exceeds 15 percent, though it is less than 25 percent.
${ }^{8}$ National Defined Population covers less than 90 percent, but at least 77 percent of National Target Population (see appendix A).
NOTE: Education systems are ordered by male-female difference in average score. Italics indicate participants identified and counted in this report as an education system and not as a separate country. Participants that did not administer TIMSS at the target grade are not shown; see the international report for their results. All U.S. state data are based on public school students only. All differences in average scores reported as statistically significant are different at the .05 level of statistical significance. The tests for significance take into account the standard error for the reported difference. Thus, a small difference for one education system may be significant while a larger difference for another education system may not be significant. The standard errors of the estimates are shown in table E-9 available at http://nces.ed.gov/pubsearch/ pubsinfor.asp?pubid=2013009.
SOURCE: International Association for the Evaluation of Educational Achievement (IEA), Trends in International Mathematics and Science Study (TIMSS), 2011.

Figure 6. Difference in average mathematics scores of 8th-grade students, by sex and education system: 2011

Education system	Difference in favor of females	Diffe	nce ma	fav s	
Ghana ${ }^{1}$					
New Zealand		\square			
Tunisia		17			
Chile		- 14			
Lebanon		- 12			
Italy		- 11			
Syrian Arab Republic ${ }^{2}$		$\square 11$			
Australia		$\square 9$			
Japan		$\square 8$			
Iran, Islamic Rep. of ${ }^{2}$		$\square 7$			
Korea, Rep. of		$\square 6$			
Hungary		$\square 6$			
Slovenia		$\square 5$			
United States ${ }^{3}$		$\square 4$			
Ukraine		$\square 3$			
Georgia ${ }^{4,5}$		$\square 3$			
Kazakhstan]2			
Russian Federation ${ }^{3}$		11			
Morocco ${ }^{1}$		\#			
Norway	3				
England-GBR ${ }^{6}$	3				
Sweden	4				
Finland	4				
Hong Kong-CHN	$6 \square$				
Chinese Taipei-CHN	$6 \square$				
Macedonia, Rep. of ${ }^{2}$	$7 \square$				
Israel ${ }^{7}$	$8 \square$				
Singapore ${ }^{3}$	9				
Turkey	9				
Lithuania ${ }^{4}$	9				
Armenia	10				
Romania	11				
Qatar ${ }^{2}$	11				
Indonesia ${ }^{2}$	13				
Saudi Arabia ${ }^{2}$	15				
United Arab Emirates	17				
Thailand	18				
Malaysia	19				
Palestinian Nat'l Auth. ${ }^{\text {a }}$	23				
Jordan ${ }^{2}$	28				
Bahrain ${ }^{2}$	43				
Oman ${ }^{2}$	63				
80	$60 \quad 40 \quad 20$	020	40	60	80
	Difference in avera	ge mathe	atic	scor	

Benchmarking education systems	Difference in favor of females					Difference in favor of males			
Indiana-USA ${ }^{3,4}$	- 8								
Florida-USA ${ }^{3,4}$	$\square 8$								
Massachusetts-USA ${ }^{3,4}$	$\square 5$								
Colorado-USA ${ }^{4}$	$\square 4$								
California-USA ${ }^{3,4}$	$\square 3$								
North Carolina-USA ${ }^{4,7}$	$\square 3$								
Alberta-CAN ${ }^{3}$	$\square 2$								
Minnesota-USA ${ }^{4}$	\#								
Quebec-CAN	\#								
Ontario-CAN ${ }^{3}$	\#								
Alabama-USA ${ }^{4}$	2 [
Abu Dhabi-UAE	2 [
Connecticut-USA ${ }^{3,4}$	4 -								
Dubai-UAE	$16 \square$								
	80	60	40	20	0	20	40	60	80
	Difference in average mathematics scores								

Male-female difference in average mathematics scores is statistically significant.
\square Male-female difference in average mathematics scores is not measurably different.
\# Rounds to zero.
${ }^{1}$ The TIMSS International Study Center has reservations about the reliability of the average achievement score because the percentage of students with achievement too low for estimation exceeds 25 percent
${ }^{2}$ The TIMSS International Study Center has reservations about the reliability of the average achievement score because the percentage of students with achievement too low for estimation exceeds 15 percent, though it is less than 25 percent.
${ }^{3}$ National Defined Population covers 90 to 95 percent of National Target Population (see appendix A).
${ }^{4}$ National Target Population does not include all of the International Target Population (see appendix A).
${ }^{5}$ Exclusion rates for Georgia are slightly underestimated as some conflict zones were not covered and no official statistics were available.
${ }^{6}$ Nearly satisfied guidelines for sample participation rates after replacement schools were included.
${ }^{7}$ National Defined Population covers less than 90 percent, but at least 77 percent of National Target Population (see appendix A).
NOTE: Education systems are ordered by male-female difference in average score. Italics indicate participants identified and counted in this report as an education system and not as a separate country. Participants that did not administer TIMSS at the target grade are not shown; see the international report for their results. All U.S. state data are based on public school students only. All differences in average scores reported as statistically significant are different at the .05 level of statistical significance. The tests for significance take into account the standard error for the reported difference. Thus, a small difference for one education system may be significant while a larger difference for another education system may not be significant. The standard errors of the estimates are shown in table E-10 available at http://nces.ed.gov/pubsearch/ pubsinfor. asp?pubid=2013009.
SOURCE: International Association for the Evaluation of Educational Achievement (IEA), Trends in International Mathematics and Science Study (TIMSS), 2011.

Performance within the United States

In 2011, TIMSS was administered to enough students and in enough schools in the United States to provide separate average mathematics scores for students by race/ethnicity and schools serving varying percentages of low-income students as measured by the percentage of students eligible for free or reduced-price lunch.In addition, TIMSS was administered to enough students and in enough schools in nine U.S. states to provide each of the states its own separate TIMSS results for public school students at grade 8 and, in two of the states, at grade 4 as well. These state mathematics results are reported at the end of this section.

As mentioned in the introduction (and explained in detail in appendix A), separate state public school samples were drawn, at grade 4, for Florida and North Carolina and, at grade 8, for Alabama, California, Colorado, Connecticut, Florida, Indiana, Massachusetts, Minnesota, and North Carolina. Some of these states chose to participate as benchmarking participants in order to compare their performance internationally, and others were invited to participate in TIMSS by the National Assessment of Educational Progress (NAEP), which is conducting a study to link TIMSS and NAEP (as explained in appendix A). The states invited to participate at grade 8 were selected based on state enrollment size and willingness to participate, as well as on their general NAEP performance (above or below the national average on NAEP), their previous experience in benchmarking to TIMSS, and their regional distribution.

Average scores of students of different races and ethnicities

In 2011, the average mathematics scores for U.S. White, Hispanic, Asian, and multiracial 4th-graders were higher than the TIMSS scale average, but for U.S. Black 4th-graders it was lower (figure 7). In comparison with the U.S. national average, U.S. White, Asian, and multiracial 4th-graders scored higher, on average, while U.S. Black and Hispanic 4th-graders scored lower, on average.

At grade 8, the average mathematics scores for U.S. White and Asian students were higher than both the TIMSS scale average and the U.S. national average. However, U.S. Black and Hispanic 8th-graders scored lower, on average, than the TIMSS scale average and the U.S. national average. U.S. multiracial 8th-graders' mathematics score was higher, on average, than the TIMSS scale average but not measurably different from the U.S. national average.

Figure 7. Average mathematics scores of U.S. 4th- and 8th-grade students, by race/ ethnicity: 2011

Average mathematics score
Grade 8

Key
TIMSS Scale Average (500)
------ U.S. Average (541 at grade 4; 509 at grade 8)
${ }^{*} p<.05$. Difference between score and U.S. average score is significant. NOTE: Reporting standards were not met for American Indian/Alaska Native and Native Hawaiian/Other Pacific Islander. Black includes African American, Hispanic includes Latino, and Asian includes Pacific Islander and Native Hawaiian. Racial categories exclude Hispanic origin. Students who identified themselves as being of Hispanic origin were classified as Hispanic, regardless of their race. Although data for some race/ethnicities are not shown separately because the reporting standards were not met, they are included in the U.S. and state totals shown throughout the report. See appendix A in this report for more information. The standard errors of the estimates are shown in table E-11 available at http://nces.ed.gov/pubsearch/pubsinfor.asp?pubid=2013009. SOURCE: International Association for the Evaluation of Educational Achievement (IEA), Trends in International Mathematics and Science Study (TIMSS), 2011.

Average scores of students attending public schools of various poverty levels

In 2011, the average mathematics score of U.S. 4th-graders in the highest poverty public schools (at least 75 percent of students eligible for free or reduced-price lunch) was not measurably different from the TIMSS scale average; however, the average scores of 4th-graders in each of the other categories of school poverty were higher than the TIMSS scale average (figure 8). Fourth-graders in the highest poverty public schools, as well as those in public schools with at least 50 percent but less than 75 percent of students eligible for free or reduced-price lunch had average scores below the U.S. national average, while those in public schools with lower proportions of low-income students scored higher, on average, than the U.S. national average.

At grade 8, students in the highest poverty public schools had a lower average score than the TIMSS scale average (468 vs . 500), while students in public schools with at least 50 percent but less than 75 percent of students eligible for free or reducedprice lunch had an average score not measurably different from the TIMSS scale average. U.S. 8th-graders attending public schools with less than 50 percent of students eligible for the free or reduced-price lunch program scored higher, on average, than the TIMSS scale average in mathematics. Eighth-graders in public schools with less than 50 percent of students eligible for free or reduced-price lunch scored, on average, above the U.S. national average, while those in public schools with 50 percent or more eligible scored, on average, below the U.S. national average.

Figure 8. Average mathematics scores of U.S. 4thand 8th-grade students, by percentage of public school students eligible for free or reduced-price lunch: 2011

${ }^{*} p<.05$. Difference between score and U.S. average score is significant. NOTE: Analyses are limited to public schools only, based on school reports of the percentage of students in public school eligible for the federal free or reduced-price lunch program. The standard errors of the estimates are shown in table E-12 available at http://nces.ed.gov/pubsearch/pubsinfor. asp?pubid=2013009.
SOURCE: International Association for the Evaluation of Educational Achievement (IEA), Trends in International Mathematics and Science Study (TIMSS), 2011.

TIMSS 2011 results for Alabama

Mathematics - Grade 8

- Public school students' average score was 466 at grade 8.
- The percentages of Alabama 8th-graders reaching each of the four TIMSS international benchmarks were not measurably different than the international medians (figure 4).
- Both male and female students in Alabama scored lower, on average, in mathematics than the TIMSS scale average (table 9).

Table 8. Average mathematics scores of 8th-grade students in Alabama public schools compared with other participating education systems: 2011

Grade 8	
\quad Education systems higher than Alabama	
Korea, Rep. of	Florida-USA
Singapore	Ontario-CAN
Chinese Taipei-CHN	United States
Hong Kong-CHN	England-GBR
Japan	Alberta-CAN
Massachusetts, US	Hungary
Minnesota-USA	Australia
Russian Federation	Slovenia
North Carolina-USA	Lithuania
Quebec-CAN	Italy
Indiana-USA	California-USA
Colorado-USA	New Zealand
Connecticut-USA	Kazakhstan
Israel	Sweden
Finland	

Education systems not measurably different from Alabama	
Ukraine	Romania
Dubai-UAE	United Arab Emirates
Norway	Turkey
Armenia	
Education systems lower than Alabama	
Lebanon	Bahrain
Abu Dhabi-UAE	Jordan
Malaysia	Palestinian Nat'l Auth.
Georgia	Saudi Arabia
Thailand	Indonesia
Macedonia, Rep. of	Syrian Arab Republic
Tunisia	Morocco
Chile	Oman
Iran, Islamic Rep. of	Ghana
Qatar	

[^12]- White, Asian, and multiracial students' average scores were not measurably different from the TIMSS scale average. However, Black and Hispanic students scored lower, on average, than the TIMSS scale average.
- Students in public schools with 25 percent or more of students eligible for free or reduced-price lunch scored lower, on average, than the TIMSS scale average.

Table 9. Average mathematics scores in grade 8 for selected student groups in public schools in Alabama: 2011

	Mathematics
Reporting groups	Grade 8
TIMSS scale average	500
U.S. average	509 *
Alabama average	466 *
Sex	467 *
Female	465 *
Male	
Race/ethnicity	489
White	428 *
Black	454 *
Hispanic	509
Asian	492
Multiracial	
Percentage of public school students eligible for free	536
or reduced-price lunch	510
Less than 10 percent	482 *
10 to 24.9 percent	464 *
25 to 49.9 percent	429 *
50 to 74.9 percent	
75 percent or more	

${ }^{*} p<.05$. Difference between score and TIMSS scale average is significant. NOTE: Black includes African American, Hispanic includes Latino, and Asian includes Pacific Islander and Native Hawaiian. Racial categories exclude Hispanic origin. Not all race/ethnicity categories are shown, but they are all included in the U.S. and state totals shown throughout the report. The standard errors of the estimates are shown in table E-13 available at http://nces.ed.gov/ pubsearch/pubsinfor.asp?pubid=2013009.
SOURCE: International Association for the Evaluation of Educational Achievement (IEA), Trends in International Mathematics and Science Study (TIMSS), 2011.

TIMSS 2011 results for California

Mathematics - Grade 8

- Public school students' average score was 493 at grade 8.
- Higher percentages of California 8th-graders performed at or above each of the four TIMSS international benchmarks than the international medians. For example, 5 percent of 8 th-graders in California performed at or above the Advanced benchmark (625) compared to the international median of 3 percent at grade 8 (figure 4).

Table 10. Average mathematics scores of 8th-grade students in California public schools compared with other participating education systems: 2011

NOTE: Italics indicate participants identified and counted in this report as an education system and not as a separate country.
SOURCE: International Association for the Evaluation of Educationa Achievement (IEA), Trends in International Mathematics and Science Study (TIMSS), 2011.

- White, Asian, and multiracial students' average scores were higher than the TIMSS scale average while Black and Hispanic students scored lower, on average, than the TIMSS scale average.
- Students in public schools with at least 10 percent but less than 50 percent of students eligible for free or reduced-price lunch scored higher, on average, than the TIMSS scale average, while students in public schools with 75 percent or more students eligible for free or reduced-price lunch scored lower, on average, than the TIMSS scale average.

Table 11. Average mathematics scores in grade 8 for selected student groups in public schools in California: 2011

	Mathematics
Reporting groups	Grade 8
TIMSS scale average	500
U.S. average	509 *
California average	493
Sex	
Female	491
Male	494
Race/ethnicity	
White	525 *
Black	468 *
Hispanic	470 *
Asian	555 *
Multiracial	519
Percentage of public school students eligible for free	
or reduced-price lunch	524
Less than 10 percent	540 *
10 to 24.9 percent	530 *
25 to 49.9 percent	489
50 to 74.9 percent	455 *
75 percent or more	

${ }^{*} p<$.05. Difference between score and TIMSS scale average is significant. NOTE: Black includes African American, Hispanic includes Latino, and Asian includes Pacific Islander and Native Hawaiian. Racial categories exclude Hispanic origin. Not all race/ethnicity categories are shown, but they are all included in the U.S. and state totals shown throughout the report. The standard errors of the estimates are shown in table E-14 available at http://nces.ed.gov/ pubsearch/pubsinfor.asp?pubid=2013009.
SOURCE: International Association for the Evaluation of Educational Achievement (IEA), Trends in International Mathematics and Science Study (TIMSS), 2011

TIMSS 2011 results for Colorado

Mathematics - Grade 8

- Public school students' average score was 518 at grade 8.
- Higher percentages of Colorado 8th-graders performed at or above each of the four TIMSS international benchmarks than the international medians. For example, 8 percent of 8th-graders in Colorado performed at or above the Advanced benchmark (625) compared to the international median of 3 percent at grade 8 (figure 4).
- Male and female students in Colorado scored higher, on average, in mathematics than the TIMSS scale average (table 13).

Table 12. Average mathematics scores of 8th-grade students in Colorado public schools compared with other participating education systems: 2011

Education systems higher than Colorado	
Grade 8	
Korea, Rep. of	Massachusetts-USA
Singapore	Minnesota-USA
Chinese Taipei-CHN	Russian Federation
Hong Kong-CHN	North Carolina-USA
Japan	Quebec-CAN
Education systems not measurably different from Colorado	
Indiana-USA	Ontario-CAN
Connecticut-USA	United States
Israel	England-GBR
Finland	Australia
Florida-USA	
Alberta-CAN	Abu Dhabi-UAE
Hungary	Malaysia
Slovenia	Georgia
Lithuania	Thailand
Italy	Macedonia, Rep. of
California-USA	Tunisia
New Zealand	Chile
Kazakhstan	Iran, Islamic Rep. of
Sweden	Qatar
Ukraine	Bahrain
Dubai-UAE	Jordan
Norway	Palestinian Nat'l Auth.
Armenia	Saudi Arabia
Alabama-USA	Indonesia
Romania	Syrian Arab Republic
United Arab Emirates	Morocco
Turkey	Oman
Lebanon	Ghana

[^13]- White and Asian students' average scores were higher than the TIMSS scale average, while Hispanic students scored lower, on average, than the TIMSS scale average.
- Students in public schools with at least 10 percent but less than 50 percent of students eligible for free or reduced-price lunch scored higher, on average, than the TIMSS scale average, while students in schools with 75 percent or more students eligible for free or reduced-price lunch scored lower, on average, than the TIMSS scale average.

Table 13. Average mathematics scores in grade 8 for selected student groups in public schools in Colorado: 2011

	Mathematics
Reporting groups	Grade 8
TIMSS scale average	500
U.S. average	509 *
Colorado average	518 *
Sex	516 *
Female	520 *
Male	
Race/ethnicity	544 *
White	487
Black	480 *
Hispanic	545 *
Asian	522
Multiracial	
Percentage of public school students eligible for free	507
or reduced-price lunch	547 *
Less than 10 percent	534 *
10 to 24.9 percent	491
25 to 49.9 percent	460 *

${ }^{*} p<.05$. Difference between score and TIMSS scale average is significant. NOTE: Black includes African American, Hispanic includes Latino, and Asian includes Pacific Islander and Native Hawaiian. Racial categories exclude Hispanic origin. Not all race/ethnicity categories are shown, but they are all included in the U.S. and state totals shown throughout the report. The standard errors of the estimates are shown in table E-15 available at http://nces.ed.gov/ pubsearch/pubsinfor.asp?pubid=2013009.
SOURCE: International Association for the Evaluation of Educational Achievement (IEA), Trends in International Mathematics and Science Study (TIMSS), 2011.

TIMSS 2011 results for Connecticut

Mathematics - Grade 8

- Public school students' average score was 518 at grade 8.
- Higher percentages of Connecticut 8th-graders performed at or above each of the four TIMSS international benchmarks than the international medians. For example, 10 percent of 8th-graders in Connecticut performed at or above the Advanced benchmark (625) compared to the international median of 3 percent at grade 8 (figure 4).
- Male and female students in Connecticut scored higher, on average, in mathematics than the TIMSS scale average (table 15).

Table 14. Average mathematics scores of 8th-grade students in Connecticut public schools compared with other participating education systems: 2011

Education systems higher than Connecticut	
Korea, Rep. of	Massachusetts-USA
Singapore	Minnesota-USA
Chinese Taipei-CHN	Russian Federation
Hong Kong-CHN	North Carolina-USA
Japan	Quebec-CAN
Education systems not measurably different from Connecticut	
Indiana-USA	Ontario-CAN
Colorado-USA	United States
Israel	England-GBR
Finland	Australia
Florida-USA	
Alberta-CAN	Abu Dhabi-UAE
Hungary	Malaysia
Slovenia	Georgia
Lithuania	Thailand
Italy	Macedonia, Rep. of
California-USA	Tunisia
New Zealand	Chile
Kazakhstan	Iran, Islamic Rep. of
Sweden	Qatar
Ukraine	Bahrain
Dubai-UAE	Jordan
Norway	Palestinian Nat'I Auth.
Armenia	Saudi Arabia
Alabama-USA	Indonesia
Romania	Syrian Arab Republic
United Arab Emirates	Morocco
Turkey	Oman
Lebanon	Ghana

[^14]- White and Asian students' average scores were higher than the TIMSS scale average, while Black and Hispanic students scored lower, on average, than the TIMSS scale average.
- Students in public schools with less than 25 percent of students eligible for free or reduced-price lunch scored higher, on average, than the TIMSS scale average, while students in schools with 50 percent or more scored lower, on average, than the TIMSS scale average.

Table 15. Average mathematics scores in grade 8 for selected student groups in public schools in Connecticut: 2011

	Mathematics
Reporting groups	Grade 8
TIMSS scale average	500
U.S. average	509 *
Connecticut average	518 *
Sex	520 *
Female	516 *
Male	
Race/ethnicity	543 *
White	453 *
Black	467 *
Hispanic	577 *
Asian	516
Multiracial	567 *
Percentage of public school students eligible for free	535 *
or reduced-price lunch	490
Less than 10 percent	456 *
10 to 24.9 percent	420 *
25 to 49.9 percent	
50 to 74.9 percent	
75 percent or more	
*p<.05. Difference between score and TIMSS scale average is significant.	
NOTE: Black includes African American, Hispanic includes Latino, and Asian	
includes Pacific Islander and Native Hawaiian. Racial categories exclude	
Hispanic origin. Not all race/ethnicity categories are shown, but they are all	
included in the U.S. and state totals shown throughout the report. The standard	
errors of the estimates are shown in table E-16 available at http://nces.ed.gov/	
pubsearch/pubsinfor.asp?pubid=2013009.	
SOURCE: International Association for the Evaluation of Educational	
Achievement (IEA), Trends in International Mathematics and Science Study	
(TIMSS), 2011.	

TIMSS 2011 results for Florida

Mathematics - Grades 4 and 8

- Public school students' average score was 545 at grade 4 and 513 at grade 8.
- Higher percentages of Florida 4th- and 8th-graders performed at or above each of the four TIMSS international benchmarks than the international medians. For example, 14 percent of 4th-graders and 8 percent of 8th-graders in

Florida performed at or above the Advanced benchmark (625) compared to the international median of 4 percent at grade 4 and 3 percent at grade 8 (figures 3 and 4).

- Male and female students in Florida scored higher, on average, than the TIMSS scale average in mathematics at grade 4, and males scored higher, on average, at grade 8 (table 17).

Continued on next page

Table 16. Average mathematics scores of 4th- and 8th-grade students in Florida public schools compared with other participating education systems: 2011

Grade 4			Grade 8
Education systems higher than Florida		Education systems higher than Florida	
Singapore Korea, Rep. of Hong Kong-CHN Chinese Taipei-CHN Japan Northern Ireland-GBR		Korea, Rep. of Singapore Chinese Taipei-CHN Hong Kong-CHN Japan Massachusetts-USA	Minnesota-USA Russian Federation North Carolina-USA Quebec-CAN
Education systems not measurably different from Florida		Education systems not measurably different from Florida	
North Carolina-USA		Indiana-USA	Alberta-CAN
Belgium (Flemish)-BEL		Colorado-USA	Hungary
Finland		Connecticut-USA	Australia
England-GBR		Israel	Slovenia
Russian Federation		Finland	Lithuania
United States		Ontario-CAN	
Netherlands		United States	
		England-GBR	
Education systems lower than Florida		Education systems lower than Florida	
Denmark	Spain	Italy	Qatar
Lithuania	Romania	California-USA	Bahrain
Quebec-CAN	Poland	New Zealand	Jordan
Portugal	Turkey	Kazakhstan	Palestinian Nat'l Auth.
Germany	Dubai-UAE	Sweden	Saudi Arabia
Ireland	Azerbaijan	Ukraine	Indonesia
Ontario-CAN	Chile	Dubai-UAE	Syrian Arab Republic
Serbia	Thailand	Norway	Morocco
Australia	Armenia	Armenia	Oman
Hungary	Georgia	Alabama-USA	Ghana
Slovenia	Bahrain	Romania	
Czech Republic	United Arab Emirates	United Arab Emirates	
Austria	Iran, Islamic Rep. of	Turkey	
Italy	Abu Dhabi-UAE	Lebanon	
Slovak Republic	Qatar	Abu Dhabi-UAE	
Alberta-CAN	Saudi Arabia	Malaysia	
Sweden	Oman	Georgia	
Kazakhstan	Tunisia	Thailand	
Malta	Kuwait	Macedonia, Rep. of	
Norway	Morocco	Tunisia	
Croatia	Yemen	Chile	
New Zealand		Iran, Islamic Rep. of	

[^15]SOURCE: International Association for the Evaluation of Educational Achievement (IEA), Trends in International Mathematics and Science Study (TIMSS), 2011.

- At grade 4, White, Hispanic, Asian, and multiracial students' average scores were higher than the TIMSS scale average.
- At grade 8, White and Asian students' average scores were higher than the TIMSS scale average, while Black students' average scores were lower.
- Students at grade 4 scored higher, on average, than the TIMSS scale average regardless of the level of poverty within public schools. At grade 8 students in public schools with at least 10 percent but less than 50 percent of students eligible for free or reduced-price lunch scored higher, on average, than the TIMSS scales average.

Table 17. Average mathematics scores in grade 4 and 8 for selected student groups in public schools in Florida: 2011

Mathematics		
Reporting groups	Grade 4	Grade 8
TIMSS scale average	500	500
U.S. average	541 *	509 *
Florida average	545 *	513 *
Sex		
Female	542 *	509
Male	549 *	517 *
Race/ethnicity		
White	570 *	531 *
Black	$504 *$	484 *
Hispanic	536 *	505
Asian	$609 *$	$615 *$
Multiracial	576 *	505

Percentage of public school students
eligible for free or reduced-price lunch

Less than 10 percent	606 *	\ddagger
10 to 24.9 percent	$595 *$	$546 *$
25 to 49.9 percent	$555 *$	$529 *$
50 to 74.9 percent	$538 *$	511
75 percent or more	$521 *$	492

\ddagger Reporting standards not met.
${ }^{*} p<.05$. Difference between score and TIMSS scale average is significant. NOTE: Black includes African American, Hispanic includes Latino, and Asian includes Pacific Islander and Native Hawaiian. Racial categories exclude Hispanic origin. Not all race/ethnicity categories are shown, but they are all included in the U.S. and state totals shown throughout the report. The standard errors of the estimates are shown in table E-17 available at http://nces.ed.gov/ pubsearch/pubsinfor.asp?pubid=2013009.
SOURCE: International Association for the Evaluation of Educational Achievement (IEA), Trends in International Mathematics and Science Study (TIMSS), 2011.

TIMSS 2011 results for Indiana

Mathematics - Grade 8

- Public school students' average score was 522 at grade 8.
- Higher percentages of Indiana 8th-graders performed at or above each of the four TIMSS international benchmarks than the international medians. For example, 7 percent of 8 thgraders in Indiana performed at or above the Advanced benchmark (625) compared to the international median of 3 percent at grade 8 (figure 4).
- Male and female students in Indiana scored higher in mathematics, on average, than the TIMSS scale average (table 19).

Table 18. Average mathematics scores of 8thgrade students in Indiana public schools compared with other participating education systems: 2011

Grade 8	
Education systems higher than Indiana	
Korea, Rep. of Singapore Chinese Taipei-CHN Hong Kong-CHN	Japan Massachusetts-USA Minnesota-USA Russian Federation
Education systems not measurably different from Indiana	
North Carolina-USA Quebec-CAN Colorado-USA Connecticut-USA Israel	Finland Florida-USA Ontario-CAN England-GBR
Education systems lower than Indiana	
United States	Lebanon
Alberta-CAN	Abu Dhabi-UAE
Hungary	Malaysia
Australia	Georgia
Slovenia	Thailand
Lithuania	Macedonia, Rep. of
Italy	Tunisia
California-USA	Chile
New Zealand	Iran, Islamic Rep. of
Kazakhstan	Qatar
Sweden	Bahrain
Ukraine	Jordan
Dubai-UAE	Palestinian Nat'I Auth.
Norway	Saudi Arabia
Armenia	Indonesia
Alabama-USA	Syrian Arab Republic
Romania	Morocco
United Arab Emirates	Oman
Turkey	Ghana

[^16]- White and multiracial students' average scores were higher than the TIMSS scale average, while Black students scored lower, on average, than the TIMSS scale average. Hispanic and Asian students' average scores were not measurably different from the TIMSS scale average.
- Students in schools with at least 10 percent but less than 50 percent of students eligible for free or reduced-price lunch scored higher, on average, than the TIMSS scale average, while students in schools with 75 percent or more students eligible for free or reduced-price lunch scored lower, on average, than the TIMSS scale average.

Table 19. Average mathematics scores in grade 8 for selected student groups in public schools in Indiana: 2011

	Mathematics
Reporting groups	Grade 8
TIMSS scale average	500
U.S. average	509 *
Indiana average	522 *
Sex	
Female	518 *
Male	526 *
Race/ethnicity	530 *
White	467 *
Black	501
Hispanic	521^{*}
Asian	530
Multiracial	
Percentage of public school students eligible for free	\ddagger
or reduced-price lunch	551 *
Less than 10 percent	527 *
10 to 24.9 percent	508
25 to 49.9 percent	474 *
50 to 74.9 percent	
75 percent or more	

\ddagger Reporting standards not met.
${ }^{*} p<.05$. Difference between score and TIMSS scale average is significant. NOTE: Black includes African American, Hispanic includes Latino, and Asian includes Pacific Islander and Native Hawaiian. Racial categories exclude Hispanic origin. Not all race/ethnicity categories are shown, but they are all included in the U.S. and state totals shown throughout the report. The standard errors of the estimates are shown in table E-18 available at http://nces.ed.gov/ pubsearch/pubsinfor.asp?pubid=2013009.
SOURCE: International Association for the Evaluation of Educational Achievement (IEA), Trends in International Mathematics and Science Study (TIMSS), 2011.

TIMSS 2011 results for Massachusetts

Mathematics - Grade 8

- Public school students' average score was 561 at grade 8.
- Higher percentages of Massachusetts 8th-graders performed at or above each of the four TIMSS international benchmarks than the international medians. For example, 19 percent of 8th-graders in Massachusetts performed at or above the Advanced benchmark (625) compared to the international median of 3 percent at grade 8 (figure 4).
- Male and female students scored higher in mathematics, on average, than the TIMSS scale average (table 21).

Table 20. Average mathematics scores of 8thgrade students in Massachusetts public schools compared with other participating education systems: 2011

Education systems higher than Massachusetts	
Education systems lower from Massachusetts	
Korea, Rep. of	Chinese Taipei-CHN
Singapore	Hong Kong-CHN
Education systems not measurably different from Massachusetts	
Japan	
Minnesota-USA	
Russian Federation	Armenia
North Carolina-USA	Alabama-USA
Quebec-CAN	Romania
Indiana-USA	United Arab Emirates
Colorado-USA	Turkey
Connecticut-USA	Lebanon
Israel	Abu Dhabi-UAE
Finland	Malaysia
Florida-USA	Georgia
Ontario-CAN	Thailand
United States	Macedonia, Rep. of
England-GBR	Tunisia
Alberta-CAN	Chile
Hungary	Iran, Islamic Rep. of
Australia	Qatar
Slovenia	Bahrain
Lithuania	Jordan
Italy	Palestinian Nat'l Auth.
California-USA	Saudi Arabia
New Zealand	Indonesia
Kazakhstan	Syrian Arab Republic
Sweden	Morocco
Ukraine	Oman
Dubai-UAE	Ghana
NOTE	

[^17] education system and not as a separate country.
SOURCE: International Association for the Evaluation of Educational Achievement (IEA), Trends in International Mathematics and Science Study (TIMSS), 2011

- White, Asian, and multiracial students' average scores were higher than the TIMSS scale average, while Black and Hispanic students' average scores were not measurably different from the TIMSS scale average.
- Students in public schools with 75 percent or more of students eligible for free or reduced-price lunch did not score measurably different, on average, from the TIMSS scale average. All other groups scored, on average, above the TIMSS scale average.

Table 21. Average mathematics scores in grade 8 for selected student groups in public schools in Massachusetts: 2011

	Mathematics
Reporting groups	Grade 8
TIMSS scale average	500
U.S. average	509 *
Massachusetts average	561 *
Sex	
Female	558 *
Male	563 *
Race/ethnicity	572 *
White	516
Black	507
Hispanic	599 *
Asian	567 *
Multiracial	
Percentage of public school students eligible for free	584 *
or reduced-price lunch	576 *
Less than 10 percent	542 *
10 to 24.9 percent	559 *
25 to 49.9 percent	491
50 to 74.9 percent	
75 percent or more	

${ }^{*} p<$.05. Difference between score and TIMSS scale average is significant. NOTE: Black includes African American, Hispanic includes Latino, and Asian includes Pacific Islander and Native Hawaiian. Racial categories exclude Hispanic origin. Not all race/ethnicity categories are shown, but they are all included in the U.S. and state totals shown throughout the report. The standard errors of the estimates are shown in table E-19 available at http://nces.ed.gov/ pubsearch/pubsinfor.asp?pubid=2013009.
SOURCE: International Association for the Evaluation of Educational Achievement (IEA), Trends in International Mathematics and Science Study (TIMSS), 2011.

TIMSS 2011 results for Minnesota

Mathematics - Grade 8

- Public school students' average score was 545 at grade 8.
- Higher percentages of Minnesota 8th-graders performed at or above each of the four TIMSS international benchmarks than the international medians. For example, 13 percent of 8thgraders in Minnesota performed at or above the Advanced benchmark (625) compared to the international median of 3 percent at grade 8 (figure 4).
- Male and female students scored higher in mathematics, on average, than the TIMSS scale average (table 23).

Table 22. Average mathematics scores of 8th-grade students in Minnesota public schools compared with other participating education systems: 2011

Education systems higher than Minnesota	
Education systems lower than Minnesota	
Korea, Rep. of	Hong Kong-CHN
Singapore	Japan
Chinese Taipei-CHN	Massachusetts-USA
Education systems not measurably different from Minnesota	
Russian Federation	North Carolina-USA
Edabama-USA	
Quebec-CAN	Romania
Indiana-USA	United Arab Emirates
Colorado-USA	Turkey
Connecticut-USA	Lebanon
Israel	Abu Dhabi-UAE
Finland	Malaysia
Florida-USA	Georgia
Ontario-CAN	Thailand
United States	Macedonia, Rep. of
England-GBR	Tunisia
Alberta-CAN	Chile
Hungary	Iran, Islamic Rep. of
Australia	Qatar
Slovenia	Bahrain
Lithuania	Jordan
Italy	Palestinian Nat'l Auth.
California-USA	Saudi Arabia
New Zealand	Indonesia
Kazakhstan	Syrian Arab Republic
Sweden	Morocco
Ukraine	Oman
Dubai-UAE	Ghana
Norway	
Armenia	

[^18]- White, Asian, and multiracial students' average scores were higher than the TIMSS scale average, while Black and Hispanic students' average scores were not measurably different from the TIMSS scale average.
- Students in public schools with 75 percent or more of students eligible for free or reduced-price lunch did not score measurably different, on average, from the TIMSS scale average. All other groups scored, on average, above the TIMSS scale average.

Table 23. Average mathematics scores in grade 8 for selected student groups in public schools in Minnesota: 2011

	Mathematics
Reporting groups	Grade 8
TIMSS scale average	500
U.S. average	509 *
Minnesota average	545 *
Sex	545 *
Female	545 *
Male	
Race/ethnicity	558 *
White	497
Black	496
Hispanic	536 *
Asian	536 *
Multiracial	
Percentage of public school students eligible for free	572 *
or reduced-price lunch	559 *
Less than 10 percent	536 *
10 to 24.9 percent	549 *
25 to 49.9 percent	470
50 to 74.9 percent	
75 percent or more	

${ }^{*} p<.05$. Difference between score and TIMSS scale average is significant. NOTE: Black includes African American, Hispanic includes Latino, and Asian includes Pacific Islander and Native Hawaiian. Racial categories exclude Hispanic origin. Not all race/ethnicity categories are shown, but they are all included in the U.S. and state totals shown throughout the report. The standard errors of the estimates are shown in table E-20 available at http://nces.ed.gov/ pubsearch/pubsinfor.asp?pubid=2013009.
SOURCE: International Association for the Evaluation of Educational Achievement (IEA), Trends in International Mathematics and Science Study (TIMSS), 2011.

TIMSS 2011 results for North Carolina

Mathematics - Grades 4 and 8

- Public school students' average score was 554 at grade 4 and 537 at grade 8.
- Higher percentages of North Carolina 4th- and 8th-graders performed at or above each of the four TIMSS international benchmarks than the international medians. For example, 16 percent of 4th-graders and 14 percent of 8th-graders in North

Carolina performed at or above the Advanced benchmark (625) compared to the international median of 4 percent at grade 4 and 3 percent at grade 8 (figures 3 and 4).

- Males outperformed females by 12 score points, on average, at grade 4 . At both grade 4 and 8 , males and females scored higher in mathematics, on average, than the TIMSS scale average (table 25).

Table 24. Average mathematics scores of 4th- and 8th-grade students in North Carolina public schools compared with other participating education systems: 2011

Grade 4			Grade 8
Education systems higher than North Carolina		Education systems higher than North Carolina	
Singapore Korea, Rep. of Hong Kong-CHN Chinese Taipei-CHN Japan		Korea, Rep. of Singapore Chinese Taipei-CHN Hong Kong-CHN Japan	Massachusetts-USA
Education systems not measurably different from North Carolina		Education systems not measurably different from North Carolina	
Northern Ireland-GBR	Florida-USA	Minnesota-USA	Indiana-USA
Belgium (Flemish)-BEL		Russian Federation	
Finland		Quebec-CAN	
Education systems lower than North Carolina		Education systems lower than North Carolina	
England-GBR	Croatia	Colorado-USA	Romania
Russian Federation	New Zealand	Connecticut-USA	United Arab Emirates
United States	Spain	Israel	Turkey
Netherlands	Romania	Finland	Lebanon
Denmark	Poland	Florida-USA	Abu Dhabi-UAE
Lithuania	Turkey	Ontario-CAN	Malaysia
Quebec-CAN	Dubai, UAE	United States	Georgia
Portugal	Azerbaijan	England-GBR	Thailand
Germany	Chile	Alberta-CAN	Macedonia, Rep. of
Ireland	Thailand	Hungary	Tunisia
Ontario-CAN	Armenia	Australia	Chile
Serbia	Georgia	Slovenia	Iran, Islamic Rep. of
Australia	Bahrain	Lithuania	Qatar
Hungary	United Arab Emirates	Italy	Bahrain
Slovenia	Iran, Islamic Rep. of	California-USA	Jordan
Czech Republic	Abu Dhabi, UAE	New Zealand	Palestinian Nat'l Auth.
Austria	Qatar	Kazakhstan	Saudi Arabia
Italy	Saudi Arabia	Sweden	Indonesia
Slovak Republic	Oman	Ukraine	Syrian Arab Republic
Alberta-CAN	Tunisia	Dubai-UAE	Morocco
Sweden	Kuwait	Norway	Oman
Kazakhstan	Morocco	Armenia	Ghana
Malta	Yemen	Alabama-USA	
Norway			

NOTE: Italics indicate participants identified and counted in this report as an education system and not as a separate country.
SOURCE: International Association for the Evaluation of Educational Achievement (IEA), Trends in International Mathematics and Science Study (TIMSS), 2011.

- At grade 4, all racial/ethnic groups performed above the TIMSS scale average. At grade 8, White, Asian, and multiracial students' average scores were above the TIMSS scale average, while Black and Hispanic students' average scores were not measurably different from the TIMSS scale average (table 25).
- In general, students at grade 4 scored higher, on average, than the TIMSS scale average. At grade 8 students in public schools with less than 50 percent of students eligible for free or reduced-price lunch scored higher, on average, than the TIMSS scale average, while average scores for students in public schools with 50 percent or more students eligible for free or reduced-price lunch were not measurably different from the TIMSS scale average.

Table 25. Average mathematics scores in grade 4 and 8 for selected student groups in public schools in North Carolina: 2011

	Mathematics	
Reporting groups	Grade 4	Grade 8
TIMSS scale average	500	500
U.S. average	541 *	509 *
North Carolina average	554 *	537 *
Sex		
Female	548 *	535 *
Male	560 *	539 *
Race/ethnicity		
White	577 *	563 *
Black	512 *	495
Hispanic	538 *	510
Asian	613 *	605 *
Multiracial	572 *	525 *
Percentage of public school students eligible for free or reduced-price lunch		
Less than 10 percent	\ddagger	605 *
10 to 24.9 percent	587 *	572 *
25 to 49.9 percent	568 *	543 *
50 to 74.9 percent	550 *	521
75 percent or more	519 *	516

\ddagger Reporting standards not met.
${ }^{*} p<.05$. Difference between score and TIMSS scale average is significant. NOTE Black includes African American, Hispanic includes Latino, and Asian includes Pacific Islander and Native Hawaiian. Racial categories exclude Hispanic origin. Not all race/ethnicity categories are shown, but they are all included in the U.S. and state totals shown throughout the report. The standard errors of the estimates are shown in table E-21 available at http://nces.ed.gov/ pubsearch/pubsinfor.asp? pubid=2013009.
SOURCE: International Association for the Evaluation of Educational Achievement (IEA), Trends in International Mathematics and Science Study (TIMSS), 2011.

Page intentionally left blank

Science Performance in the United States and Internationally

Average scores in 2011

In science, the U.S. national average score was 544 at grade 4 and 525 at grade 8 (tables 26 and 27). Both scores were higher than the TIMSS scale average of 500 at both grades.

Among the 45 countries that participated at grade 4, the U.S. average science score was among the top 6 (5 countries had higher average scores than the United States). Thirty-nine countries had lower average scores than the United States.

Among all 57 education systems that participated at grade 4 (i.e., both countries and other education systems, including U.S. states that participated in TIMSS with individual state samples), the United States was among the top 10 in average science scores (6 education systems had higher averages and 3 were not measurably different). Korea, Singapore, Finland, Japan, the Russian Federation, and Chinese TaipeiCHN had higher average scores than the United States; and Florida-USA, Alberta-CAN, and North Carolina-USA had average scores not measurably different from the U.S. average at grade 4. The United States outperformed 47 education systems.

At grade 8, among the 38 countries that participated in TIMSS, the U.S. average science score was among the top 10 (6 countries had higher averages and 3 had averages not measurably different from the United States). Twenty-eight countries had lower average scores than the United States.

Among all 56 education systems that participated at grade 8, the United States was among the top 23 education systems in average science scores (12 education systems had higher averages and 10 were not measurably different). Singapore, Massachusetts-USA, Chinese Taipei-CHN, Korea, Japan, Minnesota-USA, Finland, Alberta-CAN, Slovenia, the Russian Federation, Colorado-USA, and Hong Kong-CHN had higher average scores than the United States; and England-GBR, Indiana-USA, Connecticut-USA, North Carolina-USA, FloridaUSA, Hungary, Ontario-CAN, Quebec-CAN, Australia, and Israel had average scores not measurably different from the U.S. average at grade 8. The United States had higher average science scores than 33 education systems.

Change in scores

Several education systems that participated in TIMSS 2011 also participated in the last administration of TIMSS in 2007 or in the first administration of TIMSS in 1995. Some education systems participated in both of these previous administrations. Comparing scores between previous administrations of TIMSS and the most recent administration provides perspective on change over time. ${ }^{17}$

Change at grade 4 between 2007 and 2011

Among the 28 education systems that participated in both the 2007 and 2011 TIMSS science assessments at grade 4, the average science score increased in 9 education systems and decreased in 5 education systems (figure 9). In the rest, including the United States, there was no measurable change in the average grade 4 science scores between 2007 and 2011.

The education systems in which 4th-graders' average scores increased between 2007 and 2011 were Georgia (37 points), Tunisia (27 points), the Czech Republic (21 points), Norway (17 points), the Islamic Republic of Iran (17 points), Denmark (11 points), Japan (11 points), Sweden (9 points), and the Netherlands (8 points). None of these increases changed these education systems' standing relative to the United States between 2007 and 2011. ${ }^{18}$

Scores decreased at grade 4 during this time in Hong KongCHN (19 points), England-GBR (13 points), Australia (12 points), Italy (11 points), and New Zealand (7 points). As a result, U.S. average performance at grade 4 went from below the average of Hong Kong-CHN in 2007 to higher than that country's average in 2011, and from not measurably different from the averages of England-GBR and Italy in 2007 to higher than their averages in 2011. ${ }^{19}$

[^19]Table 26. Average science scores of 4th-grade students, by education system: 2011

Grade 4		Grade 4	
Education system	Average score	Education system	Average score
TIMSS scale average	500	New Zealand	497
Korea, Rep. of	5870	Kazakhstan ${ }^{1}$	495
Singapore ${ }^{1}$	5830	Norway ${ }^{4}$	494 (
Finland	5700	Chile	480
Japan	5590	Thailand	472
Russian Federation	5520	Turkey	463 (1)
Chinese Taipei-CHN	5520	Georgia ${ }^{3,5}$	455 (
United States ${ }^{1}$	544	Iran, Islamic Rep. of	453
Czech Republic	536 (1)	Bahrain	449 (1)
Hong Kong-CHN ${ }^{1}$	535 (1)	Malta	446
Hungary	534	Azerbaijan ${ }^{1,5}$	438
Sweden	533 (1)	Saudi Arabia	429
Slovak Republic	532 (1)	United Arab Emirates	428
Austria	532	Armenia	416
Netherlands ${ }^{2}$	531 (1)	Qatar ${ }^{1}$	394
England-GBR	529	Oman	377
Denmark ${ }^{1}$	528	Kuwait ${ }^{3,6}$	347
Germany	528	Tunisia ${ }^{6}$	346
Italy	524	Morocco ${ }^{7}$	264
Portugal	522 (1)	Yemen ${ }^{7}$	209
Slovenia	520		
Northern Ireland-GBR ${ }^{2}$	517 (Benchmarking	
Ireland	516	education systems	
Croatia ${ }^{1}$	516	Florida-USA ${ }^{3,8}$	545
Australia	516 ()	Alberta-CAN ${ }^{1}$	541
Serbia ${ }^{1}$	516 (1)	North Carolina-USA ${ }^{1,3}$	538
Lithuania ${ }^{1,3}$	515 (1)	Ontario-CAN	528 (1)
Belgium (Flemish)-BEL	509	Quebec-CAN	516
Romania	505	Dubai-UAE	461 (1)
Spain	505	Abu Dhabi-UAE	411 (1)
Poland	505		

(1) Average score is higher than U.S. average score.
(Average score is lower than U.S. average score.
${ }^{1}$ National Defined Population covers 90 to 95 percent of National Target Population (see appendix A).
${ }^{2}$ Met guidelines for sample participation rates only after replacement schools were included.
${ }^{3}$ National Target Population does not include all of the International Target Population (see appendix A).
${ }^{4}$ Nearly satisfied guidelines for sample participation rates after replacement schools were included. ${ }^{5}$ Exclusion rates for Azerbaijan and Georgia are slightly underestimated as some conflict zones were not covered and no official statistics were available.
${ }^{6}$ The TIMSS International Study Center has reservations about the reliability of the average achievement score because the percentage of students with achievement too low for estimation exceeds 15 percent, though it is less than 25 percent.
${ }^{7}$ The TIMSS International Study Center has reservations about the reliability of the average achievement score because the percentage of students with achievement too low for estimation exceeds 25 percent.
${ }^{8}$ National Defined Population covers less than 90 percent, but at least 77 percent of National Target Population (see appendix A).
NOTE: Education systems are ordered by 2011 average score. Italics indicate participants identified and counted in this report as an education system and not as a separate country. Participants that did not administer TIMSS at the target grade are not shown; see the international report for their results. All U.S. state data are based on public school students only. All average scores reported as higher or lower than the U.S. average score are different at the .05 level of statistical significance. The tests for significance take into account the standard error for the reported difference. Thus, a small difference between the United States and one education system may be significant while a large difference between the United States and another education system may not be significant. The standard errors of the estimates are shown in table E-22 available at http://nces.ed.gov/pubsearch/pubsinfor.asp?pubid=2013009.
SOURCE: International Association for the Evaluation of Educational Achievement (IEA), Trends in International Mathematics and Science Study (TIMSS), 2011.

Table 27. Average science scores of 8th-grade students, by education system: 2011

Grade 8		Grade 8	
Education system	Average score	Education system	Average score
TIMSS scale average	500	Saudi Arabia	436 (
Singapore ${ }^{1}$	5900	Malaysia	426 -
Chinese Taipei-CHN	5640	Syrian Arab Republic	426 -
Korea, Rep. of	5600	Palestinian Nat'l Auth.	420 -
Japan	558 0	Georgia ${ }^{4,5}$	420 (
Finland	552 0	Oman	420 (
Slovenia	5430	Qatar	419
Russian Federation ${ }^{1}$	5420	Macedonia, Rep. of	407 (
Hong Kong-CHN	5350	Lebanon	406 -
England-GBR ${ }^{2}$	533	Indonesia	406
United States ${ }^{1}$	525	Morocco	376
Hungary	522	Ghana ${ }^{6}$	306
Australia	519		
Israel ${ }^{3}$	516	Benchmarking	
Lithuania ${ }^{4}$	514 ®	education systems	
New Zealand	512 (Massachusetts-USA ${ }^{1,4}$	567 0
Sweden	509 -	Minnesota-USA ${ }^{4}$	5530
Italy	501 (Alberta-CAN ${ }^{1}$	5460
Ukraine	501 (Colorado-USA ${ }^{4}$	5420
Norway	494 -	Indiana-USA ${ }^{1,4}$	533
Kazakhstan	490 -	Connecticut-USA ${ }^{1,4}$	532
Turkey	483 -	North Carolina-USA ${ }^{3,4}$	532
Iran, Islamic Rep. of	474 ®	Florida-USA ${ }^{1,4}$	530
Romania	465 ®	Ontario-CAN ${ }^{1}$	521
United Arab Emirates	465 -	Quebec-CAN	520
Chile	461 -	California-USA ${ }^{1,4}$	499 (
Bahrain	452 (Alabama-USA ${ }^{4}$	485 (
Thailand	451 -	Dubai-UAE	485 (
Jordan	449 -	Abu Dhabi-UAE	461 (
Tunisia	439 (
Armenia	437 (

(1) Average score is higher than U.S. average score.

Average score is lower than U.S. average score.
${ }^{1}$ National Defined Population covers 90 to 95 percent of National Target Population (see appendix A).
${ }^{2}$ Nearly satisfied guidelines for sample participation rates after replacement schools were included.
${ }^{3}$ National Defined Population covers less than 90 percent, but at least 77 percent of National Target Population (see appendix A).
${ }^{4}$ National Target Population does not include all of the International Target Population (see appendix A).
${ }^{5}$ Exclusion rates for Georgia are slightly underestimated as some conflict zones were not covered and no official statistics were available.
${ }^{6}$ The TIMSS International Study Center has reservations about the reliability of the average achievement score because the percentage of students with achievement too low for estimation exceeds 15 percent, though it is less than 25 percent.
NOTE: Education systems are ordered by 2011 average score. Italics indicate participants identified and counted in this report as an education system and not as a separate country. Participants that did not administer TIMSS at the target grade are not shown; see the international report for their results. All U.S. state data are based on public school students only. All average scores reported as higher or lower than the U.S. average score are different at the . 05 level of statistical significance. The tests for significance take into account the standard error for the reported difference. Thus, a small difference between the United States and one education system may be significant while a large difference between the United States and another education system may not be significant. The standard errors of the estimates are shown in table E-23 available at http://nces.ed.gov/pubsearch/pubsinfor.asp?pubid=2013009. SOURCE: International Association for the Evaluation of Educational Achievement (IEA), Trends in International Mathematics and Science Study (TIMSS), 2011.

Change at grade 4 between 1995 and 2011

Among the 20 education systems that participated in both the 1995 and 2011 TIMSS science assessments at grade 4, the average science score increased in 9 education systems and decreased in 2 (figure 9). In the other 9 education systems that participated in TIMSS in both years, including the United States, there was no measurable change in the average grade 4 science scores between 1995 and 2011.

The education systems in which 4th-graders' average scores increased between 1995 and 2011 were the Islamic Republic of Iran (73 points), Portugal (70 points), Singapore (60 points), Slovenia (56 points), Hong Kong-CHN (27 points), Hungary (27 points), Ontario-CAN (11 points), Korea (11 points), and Japan (5 points). The increase in the Singapore average
meant that it moved from having a lower average score at grade 4 than the United States in 1995 to having a higher average score in 2011. ${ }^{20}$ The increases in the other education systems did not change their standing relative to the United States.

Scores decreased during this time for 4th-graders in QuebecCAN (12 points) and Norway (10 points). These decreases did not change their standing relative to the United States. ${ }^{21}$
${ }^{20}$ Two-thirds of Singapore's increase (42 points) occurred between 1995 and 2003.
${ }^{21}$ Although the average score of Austria and New Zealand did not decrease measurably, their standing relative to the United States moved from being not measurably different in 1995 to scoring below the United States in 2011.

Figure 9. Change in average science scores of 4th-grade students, by education system: 2007-2011 and 1995-2011

Change at grade 8 between 2007 and 2011

At grade 8, among the 35 education systems that participated in both the 2007 and 2011 TIMSS science assessments, the average science score increased in 9 education systems and decreased in 7 education systems (figure 10). In the rest, including the United States, there was no measurable change in the average grade 8 science scores between 2007 and 2011.

The education systems in which 8th-graders' average scores increased between 2007 and 2011 were Singapore (23 points), the Palestinian National Authority (16 points), Ukraine (16 points), the Islamic Republic of Iran (15 points), Minnesota-USA (15 points), Quebec-CAN (13 points), the

Russian Federation (13 points), Norway (8 points), and Korea (7 points). The increase in Quebec-CAN meant that its 8thgraders' average performance went from below that of U.S. 8th-graders in 2007 to being not measurably different from that of U.S. 8th-graders in 2011. None of the other education systems' increases changed their standing relative to the United States between 2007 and 2011. 22

Scores decreased at grade 8 during this time in Malaysia (44 points), Jordan (33 points), the Syrian Arab Republic
${ }^{22}$ Although the average score of Hong Kong-CHN did not increase measurably, its standing relative to the United States moved from being not measurably different in 2007 to scoring above the United States in 2011.

Figure 9. Change in average science scores of 4th-grade students, by education system: 2007-2011 and 1995-2011-Continued

Grade 4							Change in average score ${ }^{1}$							
Average score			Benchmarking education systems	-1.										
1995	2007	2011												
555	543	541	Alberta-CAN ${ }^{2}$											
516 (536	528 -	Ontario-CAN	-8										
529	517	516 -	Quebec-CAN	$-12^{*} \square-1 /$										
	460	461 ()	Dubai-UAE	${ }^{2}$										
				-20	-10	0	10	20	30	40	50	60	70	80

[^20](26 points), Indonesia (21 points), Thailand (20 points), Hungary (17 points), and Bahrain (15 points). The decrease in Hungary's score meant that the U.S. average performance at grade 8 went from below the average in Hungary in 2007 to not measurably different from Hungary's score in 2011. ${ }^{23}$

[^21]
Change at grade 8 between 1995 and 2011

At grade 8, among the 20 education systems that participated in both the 1995 and 2011 TIMSS science assessments, the average science score increased in 8 education systems, including the United States, and decreased in 3 education systems (figure 10). In the rest, there was no measurable change in the average grade 8 science scores between 1995 and 2011.

The U.S. increase in average science score at grade 8 between 1995 and 2011 was 12 score points (from 513 to 525). Two education systems had larger increases than

Figure 10. Change in average science scores of 8th-grade students, by education system: 2007-2011 and 1995-2011

the United States during this time: Lithuania (50 points) and Slovenia (29 points). However, U.S. average performance at grade 8 went from being not measurably different than Slovenia, Hong Kong-CHN, and the Russian Federation in 1995 to having a lower average score in 2011; and from being above that of Ontario-CAN in 1995 to being not measurably different in 2011. The increases in the other education systems did not change their standing relative to the United States.

Scores decreased during this time at grade 8 in Sweden (43 points), Norway (20 points), and Hungary (14 points). As a result, Sweden moved from having a higher average score
than the United States at grade 8 in 1995 to having a lower average score in 2011, Hungary moved from having a higher average score than the United States in 1995 to being not measurably different in 2011, and Norway moved from being not measurably different from the United States in 1995 to having a lower average score in 2011. ${ }^{24}$
${ }^{24}$ Although the average score of England-GBR and New Zealand did not decrease measurably, England-GBR's standing relative to the United States moved from above the United States in 1995 to being not measurably different in 2011, and New Zealand's standing relative to the United States moved from being not measurably different in 1995 to scoring below the United States in 2011.

Figure 10. Change in average science scores of 8th-grade students, by education system: 2007-2011 and 1995-2011-Continued

[^22]\&

Content domain scores in 2011

In addition to overall average science scores, TIMSS provides average scores by specific science topics called content domains. At grade 4, TIMSS tested student knowledge in three content domains: life science, physical science, and Earth science. At grade 8, TIMSS tested student knowledge in four content domains: biology, chemistry, physics, and Earth science.

At grade 4, the U.S. average score was higher than the TIMSS scale average of 500 in all three content domains in 2011 (table 28). In comparison with other education systems, U.S. 4th-graders performed better on average in life science than in the other two domains. That is, fewer education systems outperformed the United States in life science than in physical science or Earth science. U.S. 4thgraders were outperformed on average by their peers in 4

Table 28. Average science content domain scores of 4th-grade students, by education system: 2011

Education system	Life science	Physical science	Earth science	Education system	Life science	Physical science	Earth science
Singapore ${ }^{1}$	5970	5980	541	Kazakhstan ${ }^{1}$	500	486	491 -
Finland	5740	568 -	5660	New Zealand	497 -	493 -	499
Korea, Rep. of	5710	5970	6030	Norway ${ }^{4}$	496	482	506
Russian Federation	5560	548	5520	Chile	490	471 -	475 -
Hungary	552	520	524	Thailand	480	462 -	460 -
Czech Republic	550	519	537	Georgia ${ }^{3,5}$	461 -	440 -	458
United States ${ }^{1}$	547	544	539	Turkey	460	466 -	456
Japan	540 (5890	5510	Iran, Islamic Rep. of	449	453 -	457 -
Chinese Taipei-CHN	538	5690	5530	Bahrain	444 -	453 -	445
Netherlands ${ }^{2}$	537 (526	525	Azerbaijan ${ }^{1,5}$	440	436	408 -
Italy	535	509	523	Malta	439 -	453	447 -
Slovak Republic	534 (527 (535	Armenia	424	399	398
Sweden	534 -	528	538	United Arab Emirates	420	429 『	435 -
England-GBR	530 -	535	522 (Saudi Arabia	415	439 -	432 -
Denmark ${ }^{1}$	530 -	526 (1)	527 (1)	Qatar ${ }^{1}$	383	397 -	401 -
Austria	526 (535	539	Oman	370	370	371
Germany	525	535	520 (Tunisia ${ }^{6}$	342 (342 \%	319
Croatia ${ }^{1}$	525 (502 (1)	521 (Kuwait ${ }^{3,6}$	323	348	352
Hong Kong-CHN ${ }^{1}$	524	539	5480	Morocco ${ }^{7}$	245	256	208
Slovenia	524	524 (506 (Yemen ${ }^{7}$	172	198	186
Portugal	520 -	517 (531				
Lithuania ${ }^{1,3}$	520 -	514	501 -	Benchmarking education systems			
Northern Ireland-GBR ${ }^{2}$	519	520 (507	Florida-USA ${ }^{3,8}$	549	542	537
Serbia ${ }^{1}$	518 \%	523 (497 -	Alberta-CAN ${ }^{1}$	542	542	539
Australia	516	514	520	North Carolina-USA ${ }^{1,3}$	541	541	529
Poland	514 *	495 -	496 (Ontario-CAN	535	528 ®	514 -
Spain	513 -	497 (499	Quebec-CAN	524	507 ®	516
Ireland	513 (517 (520 -	Dubai-UAE	455	460 -	469 -
Belgium (Flemish)-BEL	510 *	507 (505	Abu Dhabi-UAE	403	415	418
Romania	504	508	502 (

© Average score is higher than U.S. average score.
(1) Average score is lower than U.S. average score.
${ }^{1}$ National Defined Population covers 90 to 95 percent of National Target Population (see appendix A).
${ }^{2}$ Met guidelines for sample participation rates only after replacement schools were included.
${ }^{3}$ National Target Population does not include all of the International Target Population (see appendix A).
${ }^{4}$ Nearly satisfied guidelines for sample participation rates after replacement schools were included.
${ }^{5}$ Exclusion rates for Azerbaijan and Georgia are slightly underestimated as some conflict zones were not covered and no official statistics were available
${ }^{6}$ The TIMSS International Study Center has reservations about the reliability of the average achievement score because the percentage of students with achievement too low for estimation exceeds 15 percent, though it is less than 25 percent.
${ }^{7}$ The TIMSS International Study Center has reservations about the reliability of the average achievement score because the percentage of students with achievement too low for estimation exceeds 25 percent.
${ }^{8}$ National Defined Population covers less than 90 percent, but at least 77 percent of National Target Population (see appendix A).
NOTE: Education systems are ordered by average score in life science domain. Italics indicate participants identified and counted in this report as an education system and not as a separate country. Participants that did not administer TIMSS at the target grade are not shown; see the international report for their results. All U.S. state data are based on public school students only. All average scores reported as higher or lower than U.S. average score are different at the . 05 level of statistical significance. The tests for significance take into account the standard error for the reported difference. Thus, a small difference between the United States and one education system may be significant while a large difference between the United States and another education system may not be significant. The standard errors of the estimates are shown in table E-26 available at http://nces.ed.gov/pubsearch/pubsinfor.asp?pubid=2013009.
SOURCE: International Association for the Evaluation of Educational Achievement (IEA), Trends in International Mathematics and Science Study (TIMSS), 2011.
education systems in life science, 5 education systems in physical science, and 6 education systems in Earth science.

At grade 8, the U.S. average was also higher than the TIMSS scale average of 500 in all four content domains in 2011 (table 29). In comparison with other education systems, U.S. 8thgraders performed better on average in biology than in the
other three domains. That is, fewer education systems had higher average scores than the United States in biology than in chemistry, physics, or Earth science. U.S. 8th-graders were outperformed on average by their peers in 9 education systems in biology, 10 education systems in Earth science, 10 education systems in chemistry, and 16 education systems in physics.

Table 29. Average science content domain scores of 8th-grade students, by education system: 2011

Education system	Biology	Chemistry	Physics	Earth science	Education system	Biology	Chemistry	Physics	Earth science
Singapore ${ }^{1}$	5940	5900	6020	566	Georgia ${ }^{4,5}$	435	395	401 (417 (
Korea, Rep. of	5610	5510	5770	5480	Saudi Arabia	430	428	437	441
Japan	5610	560 -	5580	5480	Malaysia	427	426	435	401
Chinese Taipei-CHN	5570	5850	5520	5680	Syrian Arab Republic	425	424 (426	414 -
Finland	5480	5540	5400	5740	Armenia	420	452	441	421
Russian Federation ${ }^{1}$	537	5540	5470	535	Qatar	411 -	416	426	408
Hong Kong-CHN	535	526	5390	539	Indonesia	410	378	397	412
England-GBR ${ }^{2}$	533	529	5330	536	Oman	407 (408 -	427	431 -
Slovenia	532	5580	5320	5600	Palestinian Nat'l Auth.	407	432	432	406
United States ${ }^{1}$	530	520	513	533	Macedonia, Rep. of	400	416 -	398	403 -
Australia	527	501 (1)	511	533	Lebanon	395	435	405	365
Israel ${ }^{3}$	523	514	514	504 (Morocco	378	374	349	377
Hungary	520	5340	5250	511	Ghana ${ }^{6}$	290	331	292	265
Lithuania ${ }^{4}$	517 (517	503 (517 (
New Zealand	514	501 (509	523	Benchmarking education systems				
Sweden	513	502 (498 (520	Massachusetts-USA ${ }^{1,4}$	5750	5680	5550	5770
Italy	503 ()	491 (490	513	Minnesota-USA ${ }^{4}$	5630	5380	5410	5740
Ukraine	492 (512	503	495 -	Alberta-CAN ${ }^{1}$	5540	521	5450	5590
Norway	491	488 -	481 (516	Colorado-USA ${ }^{4}$	5510	528	5300	5550
Turkey	484 (477 (494 -	468 (North Carolina-USA ${ }^{3,4}$	541	531	510	540
Kazakhstan	483	508	489 -	472	Indiana-USA ${ }^{1,4}$	540	526	522	540
Iran, Islamic Rep. of	466	469 -	483 (477 -	Connecticut-USA ${ }^{1,4}$	539	520	520	542
United Arab Emirates	463 (464 (1)	461 (1)	466	Ontario-CAN ${ }^{1}$	531	495 -	5210	528
Chile	462 (1)	447 (1)	453 (476	Florida-USA ${ }^{1,4}$	529	525	5300	536
Thailand	460	436 (430 -	466 (-)	Quebec-CAN	525	515	502 (536
Romania	458	469	456 (470	California-USA ${ }^{1,4}$	500	503	487	499
Tunisia	449 (434	436	414	Alabama-USA ${ }^{4}$	491	480 -	476	487
Bahrain	449	448	457 (451	Dubai-UAE	485	487 (482	487
Jordan	447 (1)	463 (446 (436	Abu Dhabi-UAE	459	461 (459	461 (

© Average score is higher than U.S. score.
\checkmark Average score is lower than U.S. score.
${ }^{1}$ National Defined Population covers 90 to 95 percent of National Target Population (see appendix A).
${ }^{2}$ Nearly satisfied guidelines for sample participation rates after replacement schools were included.
${ }^{3}$ National Defined Population covers less than 90 percent, but at least 77 percent of National Target Population (see appendix A).
${ }^{4}$ National Target Population does not include all of the International Target Population (see appendix A).
${ }^{5}$ Exclusion rates for Georgia are slightly underestimated as some conflict zones were not covered and no official statistics were available.
${ }^{6}$ The TIMSS International Study Center has reservations about the reliability of the average achievement score because the percentage of students with achievement too low for estimation exceeds 15 percent, though it is less than 25 percent.
NOTE: Education systems are ordered by average score in biology domain. Italics indicate participants identified and counted in this report as an education system and not as a separate country. Participants that did not administer TIMSS at the target grade are not shown; see the international report for their results. All U.S. state data are based on public school students only. All average scores reported as higher or lower than U.S. average score are different at the . 05 level of statistical significance. The tests for significance take into account the standard error for the reported difference. Thus, a small difference between the United States and one education system may be significant while a large difference between the United States and another education system may not be significant.
The standard errors of the estimates are shown in table E-27 available at http://nces.ed.gov/pubsearch/pubsinfor.asp?pubid=2013009.
SOURCE: International Association for the Evaluation of Educational Achievement (IEA), Trends in International Mathematics and Science Study (TIMSS), 2011.

Performance on the TIMSS international benchmarks

The TIMSS international benchmarks provide a way to understand how students' proficiency in science varies along the TIMSS scale (table 30). TIMSS defines four levels of student achievement: Advanced, High, Intermediate, and Low. The benchmarks can then be used to describe the kinds of skills and knowledge students at each score cutpoint would need to successfully answer the science items included in the assessment. The descriptions of the benchmarks differ between the two grade levels, as the scientific skills and knowledge needed to respond to the assessment items reflect the nature, difficulty, and emphasis at each grade.

In 2011, higher percentages of U.S. 4th-graders performed at or above each of the four TIMSS international benchmarks than the international medians (figure 11). For example, 15 percent of U.S. 4th-graders performed at or above the Advanced benchmark (625) compared to the international median of 5 percent. Students at the Advanced benchmark demonstrated an ability to apply their knowledge and understanding of scientific processes and relationships and show some knowledge of the process of scientific inquiry (see description in table 30).

The percentage of students performing at or above the Advanced international science benchmark was higher than in the United States in 3 education systems; was not different in 6 education systems; and was lower than the United States in 47 education systems.

Singapore, Korea, and Finland had a higher percentage of students performing at or above the Advanced international science benchmark than the United States at grade 4; and the Russian Federation, Chinese Taipei-CHN, Japan, FloridaUSA, Hungary, and North Carolina-USA had a percentage that was not measurably different from the U.S. percentage.

Similar to their 4th-grade counterparts, higher percentages of U.S. 8th-graders performed at or above each of the four TIMSS international benchmarks than the international medians (figure 12). For example, 10 percent of U.S. 8thgraders performed at or above the Advanced benchmark (625) compared to the international median of 4 percent. Students at the Advanced benchmark demonstrated an ability to communicate an understanding of complex and abstract concepts in biology, chemistry, physics, and Earth science (see description in table 30).

The percentage of 8th-grade students performing at or above the Advanced international science benchmark was higher than in the United States in 12 education systems; was not different in 10 education systems; and was lower than in the United States in 33 education systems.

Singapore, Massachusetts-USA, Chinese Taipei-CHN, Korea, Japan, Minnesota-USA, Colorado-USA, Connecticut-USA, the Russian Federation, England-GBR, Slovenia, and Finland had a higher percentage of students performing at or above the Advanced international science benchmark than the United States at grade 8; and Florida-USA, North Carolina-USA, Alberta-CAN, Israel, Australia, Indiana-USA, Hong Kong-CHN, New Zealand, Hungary, and Turkey had a percentage that was not measurably different from the U.S. percentage.

Table 30. Description of TIMSS international science benchmarks, by grade: 2011

Benchmark (score cutpoint)	Students apply knowledge and understanding of scientific processes and relationships and show some knowledge of the process of scientific inquiry. Students communicate their understanding of characteristics and life processes of organisms, reproduction and development, ecosystems and organimss' interactions with the environment, and factors relating to human health. They demonstrate understanding of properties of light and relationships among physical properties of materials, apply and communicate their understanding of electricity and energy in practical contexts, and demonstrate an understanding of magnetic and gravitational forces and motion. Students communicate their understanding of the solar system and of Earth's structure, physical characteristics, resources, processes, cycles, and history. They have a beginning ability to interpret results in the context of a simple experiment, reason and draw conclusions from descriptions and diagrams, and evaluate and support an argument.
Students apply their knowledge and understanding of the sciences to explain phenomena in everyday and abstract contexts.	
Students demonstrate some understanding of plant and animal structure, life processes, life cycles and reproduction. They also demonstrate some understanding of ecosystems and organisms' interactions with their environment, including (550) understanding of human responses to outside conditions and activities. Students demonstrate understanding of some properties of matter, electricity and energ, and magnetic and gravitational forces and motion. They show some knowledge of the solar system, and of Earth's physical characteristics, processes, and resources. Students demonstrate elementary knowledge and skills related to scientific inquiry. They compare, contrast, and make simple inferences, and provide brief descriptive responses combining knowledge of science concepts with information from both everyday and abstract contexts.	
Students have basic knowledge and understanding of practical situations in the sciences. Students recognize some basic information related to characteristics of living things, their reproduction and life cycles, and their interactions with the environment, and show some understanding of human biology and health. They also show some knowledge of properties of matter and light, electricity and energy, and forces and motion. Students know some basic facts about the solar system	
and show an initial understanding of Earth's physical characteristics and resources. They demonstrate ability to interpret	
information in pictorial diagrams and apply factual knowledge to practical situations.	

Grade 8

Advanced Students communicate an understanding of complex and abstract concepts in biology, chemistry, physics, and Earth science.
(625) Students demonstrate some conceptual knowledge about cells and the characteristics, classification, and life processes of organisms. They communicate an understanding of the complexity of ecosystems and adaptations of organisms, and apply an understanding of life cycles and heredity. Students also communicate an understanding of the structure of matter and physical and chemical properties and changes and apply knowledge of forces, pressure, motion, sound, and light. They reason about electrical circuits and properties of magnets. Students apply knowledge and communicate understanding of the solar system and Earth's processes, structures, and physical features. They understand basic features of scientific investigation. They also combine information from several sources to solve problems and draw conclusions, and they provide written explanations to communicate scientific knowledge.
High Students demonstrate understanding of concepts related to science cycles, systems, and principles. They demonstrate (550) understanding of aspects of human biology, and of the characteristics, classification, and life processes of organisms. Students communicate understanding of processes and relationships in ecosystems. They show an understanding of the classification and compositions of matter and chemical and physical properties and changes. They apply knowledge to situations related to light and sound and demonstrate basic knowledge of heat and temperature, forces and motion, and electrical circuits and magnets. Students demonstrate an understanding of the solar system and of Earth's processes, physical features, and resources. They demonstrate some scientific inquiry skills. They also combine and interpret information from various types of diagrams, contour maps, graphs, and tables; select relevant information, analyze, and draw conclusions; and provide short explanations conveying scientific knowledge.
Intermediate Students recognize and apply their understanding of basic scientific knowledge in various contexts. Students apply knowledge and communicate an understanding of human health, life cycles, adaptation, and heredity, and analyze information about ecosystems. They have some knowledge of chemistry in everyday life and elementary knowledge of properties of solutions and the concept of concentration. They are acquainted with some aspects of force, motion, and energy. They demonstrate an understanding of Earth's processes and physical features, including the water cycle and atmosphere. Students interpret information from tables, graphs, and pictorial diagrams and draw conclusions. They apply knowledge to practical situations and communicate their understanding through brief descriptive responses.

Low (400) Students can recognize some basic facts from the life and physical sciences. They have some knowledge of the human body, and demonstrate some familiarity with physical phenomena. Students interpret simple pictorial diagrams, complete simple tables, and apply basic knowledge to practical situations.
NOTE: Score cutpoints for the international benchmarks are determined through scale anchoring. Scale anchoring involves selecting benchmarks (scale points) on the achievement scales to be described in terms of student performance, and then identifying items that students scoring at the anchor points can answer correctly. The score cutpoints are set at equal intervals along the achievement scales. The score cutpoints were selected to be as close as possible to the standard percentile cutpoints (i.e., 90 th, 75 th, 50 th, and 25 th percentiles). More information on the setting of the score cutpoints can be found in appendix A and in Martin et al. (2012).
SOURCE: International Association for the Evaluation of Educational Achievement (IEA), Trends in International Mathematics and Science Study (TIMSS), 2011.

Figure 11. Percentage of 4th-grade students reaching the TIMSS international benchmarks in science, by education system: 2011

See notes at end of table.

Figure 11. Percentage of 4th-grade students reaching the TIMSS international benchmarks in science, by education system: 2011-Continued

[^23]Figure 12. Percentage of 8th-grade students reaching the TIMSS international benchmarks in science, by education system: 2011

See notes at end of table.

Figure 12. Percentage of 8th-grade students reaching the TIMSS international benchmarks in science, by education system: 2011-Continued

[^24]
Average scores of male and female students

In 2011, the U.S. average score in science at grade 4 was 10 points higher for males than for females (figure 13). Among all 57 education systems that participated in TIMSS at grade 4,
there were 32 education systems that showed a measurable difference in the average science scores of males and females: 20 in favor of males (including both participating U.S. states) and 12 in favor of females. The difference in average scores between males and females ranged from 53 score points in Kuwait (in favor of females) to 15 score points in the Czech

Figure 13. Difference in average science scores of 4th-grade students, by sex and education system: 2011

Benchmarking education systems	Difference in favor of females			Difference in favor of males			
North Carolina-USA ${ }^{2,4}$	-9						
Florida-USA ${ }^{4,8}$	-9						
Alberta-CAN ${ }^{2}$	-9						
Quebec-CAN	-8						
Ontario-CAN	$\square 6$						
Dubai-UAE	1 [
Abu Dhabi-UAE	$30 \square$						
	80	60	4020	020	40	60	80
	Difference in average science scores						

Male-female difference in average science scores is statistically significant.
\square Male-female difference in average science scores is not measurably different. \# Rounds to zero.
${ }^{1}$ Met guidelines for sample participation rates only after replacement schools were included.
${ }^{2}$ National Defined Population covers 90 to 95 percent of National Target Population (see appendix A).
${ }^{3}$ Nearly satisfied guidelines for sample participation rates after replacement schools were included.
${ }^{4}$ National Target Population does not include all of the International Target Population (see appendix A).
${ }^{5}$ Exclusion rates for Azerbaijan and Georgia are slightly underestimated as some conflict zones were not covered and no official statistics were available.
${ }^{6}$ The TIMSS International Study Center has reservations about the reliability of the average achievement score because the percentage of students with achievement too low for estimation exceeds 25 percent.
${ }^{7}$ The TIMSS International Study Center has reservations about the reliability of the average achievement score because the percentage of students with achievement too low for estimation exceeds 15 percent, though it is less than 25 percent.
${ }^{8}$ National Defined Population covers less than 90 percent, but at least 77 percent of National Target Population (see appendix A).
NOTE: Education systems are ordered by male-female difference in average score. Italics indicate participants identified and counted in this report as an education system and not as a separate country. Participants that did not administer TIMSS at the target grade are not shown; see the international report for their results. All U.S. state data are based on public school students only. All differences in average scores reported as statistically significant are different at the .05 level of statistical significance. The tests for significance take into account the standard error for the reported difference. Thus, a small difference for one education system may be significant while a larger difference for another education system may not be significant. The standard errors of the estimates are shown in table E-30 available at http://nces.ed.gov/pubsearch/pubsinfor. asp?pubid=2013009.
SOURCE: International Association for the Evaluation of Educational Achievement (IEA), Trends in International Mathematics and Science Study (TIMSS), 2011.

Republic (in favor of males). In 25 education systems, there was no measurable difference between the average science scores of males and females.

At grade 8, the U.S. average score in science was 11 points higher for males than for females (figure 14). Among all 56
education systems that participated in TIMSS at grade 8, there were 33 education systems that showed a significant difference in the average science scores of males and females: 17 in favor of males (including all the participating U.S. states except Alabama, Connecticut, and Massachusetts, which had no measurable difference in average scores between males

Figure 14. Difference in average science scores of 8th-grade students, by sex and education system: 2011

and females) and 16 in favor of females. The difference in average scores between males and females ranged from 78 score points in Oman (in favor of females) to 30 score points in Ghana (in favor of males). In 23 education systems, there was no measurable difference between the average science scores of males and females.

Performance within the United States

In 2011, TIMSS was administered to enough students and in enough schools in the United States to provide separate average science scores for students by race/ethnicity and schools serving varying percentages of low-income students as measured by the percentage of students eligible for free or reduced-price lunch.

In addition, TIMSS was administered to enough students and in enough schools in nine U.S. states to provide each of the states its own separate TIMSS results for public school students at grade 8 and, in two of the states, at grade 4 as well. These state science results are reported at the end of this section.

As mentioned in the introduction (and explained in detail in appendix A), separate state public school samples were drawn, at grade 4, for Florida and North Carolina and, at grade 8, for Alabama, California, Colorado, Connecticut, Florida, Indiana, Massachusetts, Minnesota, and North Carolina. Some of these states chose to participate as benchmarking participants in order to compare their performance internationally, and others were invited to participate in TIMSS by the National Assessment of Educational Progress (NAEP), which is conducting a study to link TIMSS and NAEP (as explained in appendix A). The states invited to participate at grade 8 were selected based on state enrollment size and willingness to participate, as well as on their general NAEP performance (above or below the national average on NAEP), their previous experience in benchmarking to TIMSS, and their regional distribution.

Average scores of students of different races and ethnicities

In 2011, the average science scores for U.S. White, Asian, Hispanic, and multiracial 4th-graders were higher than the TIMSS scale average, but for U.S. Black 4th-graders the average was lower (figure 15). In comparison with the U.S. national average, U.S. White, Asian, and multiracial 4thgraders scored higher, on average, while U.S. Black and Hispanic 4th-graders scored lower, on average.

At grade 8, the average science scores for U.S. White, Asian, and multiracial students were higher than both the TIMSS scale average and the U.S. national average. However, U.S. Black and Hispanic 8th-graders scored lower, on average, than the TIMSS scale average and U.S. national average.

Figure 15. Average science scores of U.S. 4thand 8th-grade students, by race/ ethnicity: 2011

${ }^{*} p<.05$. Difference between score and U.S. average score is significant. NOTE: Reporting standards were not met for American Indian/Alaska Native and Native Hawaiian/Other Pacific Islander. Black includes African American, Hispanic includes Latino, and Asian includes Pacific Islander and Native Hawaiian. Racial categories exclude Hispanic origin. Students who identified themselves as being of Hispanic origin were classified as Hispanic, regardless of their race. Although data for some race/ethnicities are not shown separately because the reporting standards were not met, they are included in the U.S. and state totals shown throughout the report. See appendix A in this report for more information. The standard errors of the estimates are shown in table E-32 available at http://nces.ed.gov/pubsearch/pubsinfor.asp?pubid=2013009. SOURCE: International Association for the Evaluation of Educational Achievement (IEA), Trends in International Mathematics and Science Study (TIMSS), 2011.

Average scores of students attending public schools of various poverty levels

In 2011, the average science score of U.S. 4th-graders in the highest poverty public schools (at least 75 percent of students eligible for free or reduced-price lunch) was not measurably different from the TIMSS scale average. The average scores of 4 th-graders in each of the other categories of school poverty were higher than the TIMSS scale average (figure 16). Fourth-graders in the highest poverty public schools, as well as those in public schools with at least 50 percent but less than 75 percent of students eligible for free or reducedprice lunch, had average scores below the U.S. national average, while those in public schools with lower proportions of low-income students scored higher, on average, than the U.S. national average.

At grade 8, students in the highest poverty public schools had a lower average score than the TIMSS scale average (476 vs. 500), while students in public schools with less than 75 percent of students eligible for free or reduced-price lunch had a higher score, on average, than the TIMSS scale average. Eighth-graders in public schools with less than 50 percent of students eligible for free or reduced-price lunch scored, on average, above the U.S. national average, while students in public schools with 50 percent or more of students eligible scored, on average, below.

Figure 16. Average science scores of U.S. 4th- and 8th-grade students, by percentage of public school students eligible for free or reduced-price lunch: 2011

Percentage of public school students eligible for free or reduced-price lunch

Key
TIMSS Scale Average (500)
U.S. Average (544 at grade 4; 525 at grade 8)

[^25]
TIMSS 2011 results for Alabama

Science - Grade 8

- Public school students' average score was 485 at grade 8.
- The percentages of Alabama 8th-graders reaching the Advanced, High, and Intermediate international science benchmarks were not measurably different from the international medians (figure 12). However, Alabama 8thgraders performed above the international median at the Low benchmark (83 percent vs. 79 percent).
- Female students in Alabama scored below the TIMSS scale average in science (table 32).

Table 31. Average science scores of 8 th-grade students in Alabama public schools compared with other participating education systems: 2011

Grade 8	
Education systems higher than Alabama	
Singapore	North Carolina-USA
Massachusetts-USA	Florida-USA
Chinese Taipei-CHN	United States
Korea, Rep. of	Hungary
Japan	Ontario-CAN
Minnesota-USA	Quebec-CAN
Finland	Australia
Alberta-CAN	Israel
Slovenia	Lithuania
Russian Federation	New Zealand
Colorado-USA	Sweden
Hong Kong-CHN	Italy
England-GBR	Ukraine
Indiana-USA	
Connecticut-USA	

Education systems not measurably different from Alabama

| California-USA Dubai-UAE
 Norway Turkey
 Kazakhstan Iran, Islamic Rep. of
 Education systems
 lower than Alabama
 Romania Syrian Arab Republic
 United Arab Emirates Palestinian Nat'I Auth.
 Chile Georgia
 Abu Dhabi-UAE Oman
 Bahrain Qatar
 Thailand Macedonia, Rep. of
 Jordan Lebanon
 Tunisia Indonesia
 Armenia Morocco
 Saudi Arabia Ghana
 Malaysia |
| :--- | :--- |

NOTE: Italics indicate participants identified and counted in this report as an education system and not as a separate country.
SOURCE: International Association for the Evaluation of Educational Achievement (IEA), Trends in International Mathematics and Science Study (TIMSS), 2011.

- White students' average scores were higher than the TIMSS scale average. Asian and multiracial students' average scores were not measurably different from the TIMSS scale average. However, Black and Hispanic students scored lower, on average, that the TIMSS scale average (table 32).
- Students in public schools with less than 10 percent of students eligible for free or reduced-price lunch scored higher, on average, than the TIMSS scale average, while those in schools with 75 percent or more of students eligible for free or reduced-price lunch scored lower, on average, than the TIMSS scale average.

Table 32. Average science scores in grade 8 for selected student groups in public schools in Alabama: 2011

	Science
Reporting groups	Grade 8
TIMSS scale average	500
U.S. average	525 *
Alabama average	485 *
Sex	482 *
Female	489
Male	
Race/ethnicity	519 *
White	435 *
Black	470 *
Hispanic	493
Asian	511
Multiracial	

Percentage of public school students eligible for free
or reduced-price lunch
Less than 10 percent 557 *
10 to 24.9 percent 521
25 to 49.9 percent 504
50 to 74.9 percent 492
75 percent or more 441 *
${ }^{*} p<.05$. Difference between score and TIMSS scale average is significant. NOTE: Black includes African American, Hispanic includes Latino, and Asian includes Pacific Islander and Native Hawaiian. Racial categories exclude Hispanic origin. Not all race/ethnicity categories are shown, but they are all included in the U.S. and state totals shown throughout the report. The standard errors of the estimates are shown in table E-34 available at http://nces.ed.gov/ pubsearch/pubsinfor.asp?pubid=2013009.
SOURCE: International Association for the Evaluation of Educational Achievement (IEA), Trends in International Mathematics and Science Study (TIMSS), 2011.

TIMSS 2011 results for California

Science - Grade 8

- Public school students' average score was 499 at grade 8.
- Higher percentages of California 8th-graders performed at or above each of the four TIMSS international benchmarks than the international medians. For example, 6 percent of 8thgraders in California performed at or above the Advanced benchmark (625) compared to the international median of 4 percent at grade 8 (figure 12).
- In California males outperformed females by 12 score points, on average, in science (figure 14).

Table 33. Average science scores of 8th-grade students in California public schools compared with other participating education systems: 2011

Grade 8	
Education systems higher than California	
Singapore	Indiana-USA
Massachusetts-USA	Connecticut-USA
Chinese Taipei-CHN	North Carolina-USA
Korea, Rep. of	Florida-USA
Japan	United States
Minnesota-USA	Hungary
Finland	Ontario-CAN
Alberta-CAN	Quebec-CAN
Slovenia	Australia
Russian Federation	Israel
Colorado-USA	Lithuania
Hong Kong-CHN	New Zealand
England-GBR	Sweden

Italy	Norway
Ukraine	Kazakhstan
	Alabama-USA
Education systems lower than California	
Dubai-UAE	Saudi Arabia
Turkey	Malaysia
Iran, Islamic Rep. of	Syrian Arab Republic
Romania	Palestinian Nat'l Auth.
United Arab Emirates	Georgia
Chile	Oman
Abu Dhabi-UAE	Qatar
Bahrain	Macedonia, Rep. of
Thailand	Lebanon
Jordan	Indonesia
Tunisia	Morocco
Armenia	Ghana

NOTE: Italics indicate participants identified and counted in this report as an education system and not as a separate country.
SOURCE: International Association for the Evaluation of Educational Achievement (IEA), Trends in International Mathematics and Science Study (TIMSS), 2011.

- White, Asian, and multiracial students' average scores were higher than the TIMSS scale average, while Black and Hispanic students scored lower, on average, than the TIMSS scale average.
- Students in public schools with less than 50 percent of students eligible for free or reduced-price lunch scored higher, on average, than the TIMSS scale average, while students in public schools with 75 percent or more of students eligible for free or reduced-price lunch scored lower, on average, than the TIMSS scale average.

Table 34. Average science scores in grade 8 for selected student groups in public schools in California: 2011

	Science
Reporting groups	Grade 8
TIMSS scale average	500
U.S. average	525 *
California average	499
Sex	493
Female	504
Male	546 *
Race/ethnicity	460 *
White	475 *
Black	542 *
Hispanic	529 *
Asian	
Multiracial	

Percentage of public school students eligible for free
or reduced-price lunch

Less than 10 percent	547 *
10 to 24.9 percent	542 *
25 to 49.9 percent	539 *
50 to 74.9 percent	493
75 percent or more	457 *

${ }^{*} p<.05$. Difference between score and TIMSS scale average is significant. NOTE: Black includes African American, Hispanic includes Latino, and Asian includes Pacific Islander and Native Hawaiian. Racial categories exclude Hispanic origin. Not all race/ethnicity categories are shown, but they are all included in the U.S. and state totals shown throughout the report. The standard errors of the estimates are shown in table E-35 available at http://nces.ed.gov/ pubsearch/pubsinfor.asp?pubid=2013009.
SOURCE: International Association for the Evaluation of Educational Achievement (IEA), Trends in International Mathematics and Science Study (TIMSS), 2011.

TIMSS 2011 results for Colorado

Science - Grade 8

- Public school students' average score was 542 at grade 8.
- Higher percentages of Colorado 8th-graders performed at or above each of the four TIMSS international benchmarks than the international medians. For example, 14 percent of 8thgraders in Colorado performed at or above the Advanced benchmark (625) compared to the international median of 4 percent at grade 8 (figure 12).
- In Colorado males outperformed females by 11 score points, on average, in science (figure 14). Male and female students in Colorado scored higher, on average, in science than the TIMSS scale average (table 36).

Table 35. Average science scores of 8 th-grade students in Colorado public schools compared with other participating education systems: 2011

Grade 8

Grade 8			
Education systems higher than Colorado			
Singapore	Korea, Rep. of		
Massachusetts-USA	Japan		
Chinese Taipei-CHN	Finland		

Education systems not measurably different from Colorado

Minnesota-USA	England-GBR
Alberta-CAN	Indiana-USA
Slovenia	Connecticut-USA
Russian Federation	North Carolina-USA
Hong Kong-CHN	Florida-USA
Education systems lower than Colorado	
United States	Chile
Hungary	Abu Dhabi-UAE
Ontario-CAN	Bahrain
Quebec-CAN	Thailand
Australia	Jordan
Israel	Tunisia
Lithuania	Armenia
New Zealand	Saudi Arabia
Sweden	Malaysia
Italy	Syrian Arab Republic
Ukraine	Palestinian Nat'I Auth.
California-USA	Georgia
Norway	Oman
Kazakhstan	Qatar
Alabama-USA	Macedonia, Rep. of
Dubai-UAE	Lebanon
Turkey	Indonesia
Iran, Islamic Rep. of	Morocco
Romania	Ghana
United Arab Emirates	

[^26]- White, Asian, and multiracial students' average scores were higher than the TIMSS scale average. Black and Hispanic students' average scores were not measurably different (table 36).
- Students in public schools with at least 10 percent but less than 50 percent of students eligible for free or reduced-price lunch scored higher, on average, than the TIMSS scale average. Average scores of students in public schools in other categories of eligibility for free or reduced-price lunch were not measurably different from the TIMSS scale average, including those in schools where less than 10 percent were eligible.

Table 36. Average science scores in grade 8 for selected student groups in public schools in Colorado: 2011

	Science
Reporting groups	Grade 8
TIMSS scale average	500
U.S. average	525 *
Colorado average	542 *
Sex	537 *
Female	548 *
Male	572 *
Race/ethnicity	507
White	499
Black	549 *
Hispanic	552 *
Asian	

Percentage of public school students eligible for free or reduced-price lunch

Less than 10 percent	534
10 to 24.9 percent	$568 *$
25 to 49.9 percent	$560 *$
50 to 74.9 percent	514
75 percent or more	486

${ }^{*} p<.05$. Difference between score and TIMSS scale average is significant. NOTE: Black includes African American, Hispanic includes Latino, and Asian includes Pacific Islander and Native Hawaiian. Racial categories exclude Hispanic origin. Not all race/ethnicity categories are shown, but they are all included in the U.S. and state totals shown throughout the report. The standard errors of the estimates are shown in table E-36 available at http://nces.ed.gov/ pubsearch/pubsinfor.asp?pubid=2013009.
SOURCE: International Association for the Evaluation of Educational Achievement (IEA), Trends in International Mathematics and Science Study (TIMSS), 2011.

TIMSS 2011 results for Connecticut

Science－Grade 8

－Public school students＇average score was 532 at grade 8.
－Higher percentages of Connecticut 8th－graders performed at or above each of the four TIMSS international benchmarks than the international medians．For example， 14 percent of 8th－graders in Connecticut performed at or above the Advanced benchmark（625）compared to the international median of 4 percent at grade 8 （figure 12）．
－Male and female students in Connecticut scored higher， on average，in science than the TIMSS scale average．

Table 37．Average science scores of 8th－grade students in Connecticut public schools compared with other participating education systems： 2011

Education systems higher than Connecticut	
Singapore	Minnesota－USA
Massachusetts－USA	Finland
Chinese Taipei－CHN	Alberta－CAN
Korea，Rep．of	Slovenia
Japan	
Education systems not measurably different from Connecticut	
Russian Federation	North Carolina－USA
Colorado－USA	Florida－USA
Hong Kong－CHN	United States
England－GBR	Hungary
Indiana－USA	Australia
	Abu Dhabi－UAE
Ontario－CAN	Bahrain
Quebec－CAN	Thailand
Israel	Jordan
Lithuania	Tunisia
New Zealand	Armenia
Sweden	Saudi Arabia
Italy	Malaysia
Ukraine	Syrian Arab Republic
California－USA	Palestinian Nat＇l Auth．
Norway	Georgia
Kazakhstan	Oman
Alabama－USA	Qatar
Dubai－UAE	Macedonia，Rep．of
Turkey	Lebanon
Iran，Islamic Rep．of	Morocco
Romania	Ghana
United Arab Emirates	
Chile	

NOTE：Italics indicate participants identified and counted in this report as an education system and not as a separate country．
SOURCE：International Association for the Evaluation of Educational Achievement（IEA），Trends in International Mathematics and Science Study （TIMSS）， 2011.
－White，Asian，and multiracial students＇average scores were higher than the TIMSS scale average，while Black and Hispanic students scored lower，on average，than the TIMSS scale average（table 38）．
－Students in public schools with less than 25 percent of students eligible for free or reduced－price lunch scored higher，on average，than the TIMSS scale average，while students in schools with 50 percent or more of students eligible for free or reduced－price lunch scored lower， on average，than the TIMSS scale average．

Table 38．Average science scores in grade 8 for selected student groups in public schools in Connecticut： 2011

	Science
Reporting groups	Grade 8
TIMSS scale average	500
U．S．average	525 ＊
Connecticut average	532 ＊
Sex	530 ＊
Female	533 ＊
Male	$562 *$
Race／ethnicity	459 ＊
White	474 ＊
Black	565 ＊
Hispanic	543 ＊
Asian	
Multiracial	$581 *$
Percentage of public school students eligible for free	$549 *$
or reduced－price lunch	509
Less than 10 percent	471
10 to 24.9 percent	420 ＊
25 to 49.9 percent	
50 to 74.9 percent	
75 percent or more	

${ }^{*} p<.05$ ．Difference between score and TIMSS scale average is significant． NOTE Black includes African American，Hispanic includes Latino，and Asian includes Pacific Islander and Native Hawaiian．Racial categories exclude Hispanic origin．Not all race／ethnicity categories are shown，but they are all included in the U．S．and state totals shown throughout the report．The standard errors of the estimates are shown in table E－37 available at http：／／nces．ed．gov／ pubsearch／pubsinfor．asp？pubid＝2013009．
SOURCE：International Association for the Evaluation of Educational Achievement（IEA），Trends in International Mathematics and Science Study （TIMSS）， 2011.

TIMSS 2011 results for Florida

Science - Grades 4 and 8

- Public school students' average science score was 545 at grade 4 and 530 at grade 8 .
- Higher percentages of Florida 4th- and 8th-graders performed at or above each of the four TIMSS international benchmarks than the international medians. For example, 14 percent of 4th-graders and 13 percent of 8th-graders
in Florida performed at or above the Advanced benchmark (625) compared to the international median of 5 percent at grade 4 and 4 percent at grade 8 (figures 11 and 12).
- Males outperformed females by 9 score points on average in science at grade 4 (figure 13) and by 15 score points at grade 8 (figure 14). In both grade 4 and grade 8, male and female students in Florida scored higher, on average, in science than the TIMSS scale average (table 40).

Table 39. Average science scores of 4th- and 8th-grade students in Florida public schools compared with other participating education systems: 2011

	Grade 4	
Education systems higher than Florida		
Korea, Rep. of Finland Singapore Japan 		

Education systems not measurably different from Florida	
Russian Federation	North Carolina-USA
Chinese Taipei-CHN	Czech Republic
United States	Hong Kong-CHN
Alberta-CAN	

		nnecticut-USA	srae
Education systems lower than Florida		Education systems lower than Florida	
Hungary	New Zealand	Lithuania	Syrian Arab Republic
Sweden	Kazakhstan	New Zealand	Palestinian Nat'l Auth.
Slovak Republic	Norway	Sweden	Georgia
Austria	Chile	Italy	Oman
Netherlands	Thailand	Ukraine	Qatar
England-GBR	Turkey	California-USA	Macedonia, Rep. of
Denmark	Dubai-UAE	Norway	Lebanon
Germany	Georgia	Kazakhstan	Indonesia
Ontario-CAN	Iran, Islamic Rep. of	Alabama-USA	Morocco
Italy	Bahrain	Dubai-UAE	Ghana
Portugal	Malta	Turkey	
Slovenia	Azerbaijan	Iran, Islamic Rep. of	
Northern Ireland-GBR	Saudi Arabia	Romania	
Quebec-CAN	United Arab Emirates	United Arab Emirates	
Ireland	Armenia	Chile	
Croatia	Abu Dhabi-UAE	Abu Dhabi-UAE	
Australia	Qatar	Bahrain	
Serbia	Oman	Thailand	
Lithuania	Kuwait	Jordan	
Belgium (Flemish)-BEL	Tunisia	Tunisia	
Romania	Morocco	Armenia	
Spain	Yemen	Saudi Arabia	
Poland		Malaysia	

NOTE: Italics indicate participants identified and counted in this report as an education system and not as a separate country.
SOURCE: International Association for the Evaluation of Educational Achievement (IEA), Trends in International Mathematics and Science Study (TIMSS), 2011.

Grade 8		
Education systems higher than Florida		
Singapore	Japan	
Massachusetts-USA	Minnesota-USA	
Chinese Taipei-CHN	Finland	
Korea, Rep. of	Alberta-CAN	

Education systems not measurably different	
Slovenia	North Carolina-USA
Russian Federation	United States
Colorado-USA	Hungary
Hong Kong-CHN	Ontario-CAN
England-GBR	Quebec-CAN
Indiana-USA	Australia
Connecticut-USA	Israel

Iran, Islamic Rep. of
mania

Chile
Abu Dhabi-UAE
Bahrain

Jordan
unisia

Saudi Arabia
Malaysia

- At grade 4 and grade 8, White, Hispanic, Asian, and multiracial students' average scores were higher than the TIMSS scale average, while Black students' average scores were not measurably different from the TIMSS scale average (table 40).
- Students at grade 4 scored higher, on average, than the TIMSS scale average regardless of the level of poverty within public schools. At grade 8, students in public schools with at least 10 percent but less than 75 percent of students eligible for free or reduced-price lunch scored, on average, higher than the TIMSS scale average, while the average score for students in public schools with 75 percent or more of students eligible for free or reduced-price lunch was not measurably different from the TIMSS scale average.

Table 40. Average science scores in grade 4 and 8 for selected student groups in public schools in Florida: 2011

	Science	
Reporting groups	Grade 4	Grade 8
TIMSS scale average	500	500
U.S. average	544 *	525 *
Florida average	545 *	530 *
Sex		
Female	540 *	522 *
Male	549 *	537 *
Race/ethnicity		
White	575 *	560 *
Black	504	485
Hispanic	531 *	523 *
Asian	593 *	600 *
Multiracial	577 *	524 *
Percentage of public school students eligible for free or reduced-price lunch		
Less than 10 percent	613 *	\ddagger
10 to 24.9 percent	599 *	566 *
25 to 49.9 percent	556 *	550 *
50 to 74.9 percent	541 *	530 *
75 percent or more	517 *	498

\ddagger Reporting standards not met.
${ }^{*} p<.05$. Difference between score and TIMSS scale average is significant. NOTE: Black includes African American, Hispanic includes Latino, and Asian includes Pacific Islander and Native Hawaiian. Racial categories exclude Hispanic origin. Not all race/ethnicity categories are shown, but they are all included in the U.S. and state totals shown throughout the report. The standard errors of the estimates are shown in table E-38 available at http://nces.ed.gov/ pubsearch/pubsinfor.asp?pubid=2013009.
SOURCE: International Association for the Evaluation of Educational Achievement (IEA), Trends in International Mathematics and Science Study (TIMSS), 2011.

TIMSS 2011 results for Indiana

Science - Grade 8

- Public school students' average score was 533 at grade 8.
- Higher percentages of Indiana 8th-graders performed at or above each of the four TIMSS international benchmarks than the international medians. For example, 10 percent of 8th-graders in Indiana performed at or above the Advanced benchmark (625) compared to the international median of 4 percent at grade 8 (figure 12).
- In Indiana, males outperformed females by 15 score points on average in science at grade 8 (figure 14). Male and female students in Indiana scored higher, on average, in science than the TIMSS scale average (table 42).

Table 41. Average science scores of 8 th-grade students in Indiana public schools compared with other participating education systems: 2011

Grade 8

Grade 8	
Education systems higher than Indiana	
Singapore	Japan
Massachusetts-USA	Minnesota-USA
Chinese Taipei-CHN	Finland
Korea, Rep. of	Alberta-CAN
Education systems not measurably different from Indiana	
Slovenia	Connecticut-USA
Russian Federation	North Carolina-USA
Colorado-USA	Florida-USA
Hong Kong-CHN	United States
England-GBR	Hungary
Education systems lower than Indiana	
Ontario-CAN	Abu Dhabi-UAE
Quebec-CAN	Bahrain
Australia	Thailand
Israel	Jordan
Lithuania	Tunisia
New Zealand	Armenia
Sweden	Saudi Arabia
Italy	Malaysia
Ukraine	Syrian Arab Republic
California-USA	Palestinian Nat'l Auth.
Norway	Georgia
Kazakhstan	Oman
Alabama-USA	Qatar
Dubai-UAE	Macedonia, Rep. of
Turkey	Lebanon
Iran, Islamic Rep. of	Indonesia
Romania	Morocco
United Arab Emirates	Ghana
Chile	

NOTE: Italics indicate participants identified and counted in this report as an education system and not as a separate country.
SOURCE: International Association for the Evaluation of Educational Achievement (IEA), Trends in International Mathematics and Science Study (TIMSS), 2011.

- White students' average scores were higher than the TIMSS scale average, while Black and Asian students scored lower, on average, than the TIMSS scale average. Hispanic and multiracial students' average scores were not measurably different from the TIMSS scale average.
- Students in public schools with at least 10 percent but less than 75 percent of students eligible for free or reduced-price lunch scored higher, on average, than the TIMSS scale average, while the average score of students in schools with 75 percent or more of students eligible for free or reducedprice lunch was not measurably different from the TIMSS scale average.

Table 42. Average science scores in grade 8 for selected student groups in public schools in Indiana: 2011

	Science
Reporting groups	Grade 8
TIMSS scale average	500
U.S. average	525 *
Indiana average	533 *
Sex	526 *
Female	541 *
Male	546 *
Race/ethnicity	460 *
White	499
Black	492 *
Hispanic	534
Asian	

Percentage of public school students eligible for free or reduced-price lunch

Less than 10 percent	\ddagger
10 to 24.9 percent	$563 *$
25 to 49.9 percent	$540 *$
50 to 74.9 percent	$519 *$
75 percent or more	476

\ddagger Reporting standards not met

${ }^{*} p<.05$. Difference between score and TIMSS scale average is significant. NOTE: Black includes African American, Hispanic includes Latino, and Asian includes Pacific Islander and Native Hawaiian. Racial categories exclude Hispanic origin. Not all race/ethnicity categories are shown, but they are all included in the U.S. and state totals shown throughout the report. The standard errors of the estimates are shown in table E-39 available at http://nces.ed.gov/ pubsearch/pubsinfor.asp?pubid=2013009.
SOURCE: International Association for the Evaluation of Educational Achievement (IEA), Trends in International Mathematics and Science Study (TIMSS), 2011.

TIMSS 2011 results for Massachusetts

Science - Grade 8

- Public school students' average score was 567 at grade 8 .
- Higher percentages of Massachusetts 8th-graders performed at or above each of the four TIMSS international benchmarks than the international medians. For example, 24 percent of 8th-graders in Massachusetts performed at or above the Advanced benchmark (625) compared to the international median of 4 percent at grade 8 (figure 12).

Table 43. Average science scores of 8thgrade students in Massachusetts public schools compared with other participating education systems: 2011

Education systems higher than Massachusetts	
Education systems lower than Massachusetts	
Education systems not measurably different from Massachusetts	
Chinese Taipei-CHN	Japan
Korea, Rep. of	Minnesota-USA
Finland	
Alberta-CAN	Dubai-UAE
Slovenia	Turkey
Russian Federation	Iran, Islamic Rep. of
Colorado-USA	Romania
Hong Kong-CHN	United Arab Emirates
England-GBR	Chile
Indiana-USA	Abu Dhabi-UAE
Connecticut-USA	Bahrain
North Carolina-USA	Thailand
Florida-USA	Jordan
United States	Tunisia
Hungary	Armenia
Ontario-CAN	Saudi Arabia
Quebec-CAN	Malaysia
Australia	Syrian Arab Republic
Israel	Palestinian Nat'l Auth.
Lithuania	Georgia
New Zealand	Oman
Sweden	Qatar
Italy	Macedonia, Rep. of
Ukraine	Lebanon
California-USA	Indonesia
Norway	Morocco
Kazakhstan	Ghana

NOTE: Italics indicate participants identified and counted in this report as an education system and not as a separate country.
SOURCE: International Association for the Evaluation of Educational Achievement (IEA), Trends in International Mathematics and Science Study (TIMSS), 2011.

- Male and female students in Massachusetts scored higher, on average, in science than the TIMSS scale average (table 44).
- White, Asian, and multiracial students' average scores were higher than the TIMSS scale average, while Black and Hispanic students' average scores were not measurably different from the TIMSS scale average (table 44).
- Students in public schools with 75 percent or more of students eligible for free or reduced-price lunch had average scores not measurably different from the TIMSS scale average. All other groups scored, on average, above the TIMSS scale average.

Table 44. Average science scores in grade 8 for selected student groups in public schools in Massachusetts: 2011

	Science
Reporting groups	Grade 8
TIMSS scale average	500
U.S. average	525 *
Massachusetts average	567 *
Sex	
Female	564 *
Male	570 *
Race/ethnicity	587 *
White	514
Black	494
Hispanic	576 *
Asian	576 *
Multiracial	

Percentage of public school students eligible for free
or reduced-price lunch
Less than 10 percent 594 *
10 to 24.9 percent 589 *
25 to 49.9 percent 553 *
50 to 74.9 percent 550 *
75 percent or more 477
${ }^{*} p<.05$. Difference between score and TIMSS scale average is significant. NOTE: Black includes African American, Hispanic includes Latino, and Asian includes Pacific Islander and Native Hawaiian. Racial categories exclude Hispanic origin. Not all race/ethnicity categories are shown, but they are all included in the U.S. and state totals shown throughout the report. The standard errors of the estimates are shown in table E-40 available at http://nces.ed.gov/ pubsearch/pubsinfor.asp?pubid=2013009.
SOURCE: International Association for the Evaluation of Educational Achievement (IEA), Trends in International Mathematics and Science Study (TIMSS), 2011.

TIMSS 2011 results for Minnesota

Science - Grade 8

- Public school students' average score was 553 at grade 8 .
- Higher percentages of Minnesota 8th-graders performed at or above each of the four TIMSS international benchmarks than the international medians. For example, 16 percent of 8thgraders in Minnesota performed at or above the Advanced benchmark (625) compared to the international median of 4 percent at grade 8 (figure 12).
- In Minnesota, males outperformed females by 12 score points on average in science at grade 8 (figure 14). Male and female students scored higher, on average, in science than the TIMSS scale average (table 46).

Table 45. Average science scores of 8th-grade students in Minnesota public schools compared with other participating education systems: 2011

Grade 8	
Education systems higher than Minnesota	
Singapore	Chinese Taipei-CHN
Education systems not measurably different from Minnesota	
Massachusetts-USA	Alberta-CAN
Korea, Rep. of	Slovenia
Japan	Russian Federation
Finland	Colorado-USA
	Iran, Islamic Rep. of
Hong Kong-CHN	Romania
England-GBR	United Arab Emirates
Indiana-USA	Chile
Connecticut-USA	Abu Dhabi-UAE
North Carolina-USA	Bahrain
Florida-USA	Thailand
United States	Jordan
Hungary	Tunisia
Ontario-CAN	Armenia
Quebec-CAN	Saudi Arabia
Australia	Malaysia
Israel	Syrian Arab Republic
Lithuania	Palestinian Nat'I Auth.
New Zealand	Georgia
Sweden	Oman
Italy	Qatar
Ukraine	Macedonia, Rep. of
California-USA	Lebanon
Norway	Indonesia
Kazakhstan	Morocco
Alabama-USA	Ghana
Dubai-UAE	
Turkey	

NOTE: Italics indicate participants identified and counted in this report as an education system and not as a separate country.
SOURCE: International Association for the Evaluation of Educational Achievement (IEA), Trends in International Mathematics and Science Study (TIMSS), 2011.

- White and multiracial students' average scores were higher than the TIMSS scale average while Black, Hispanic, and Asian students' average scores were not measurably different from the TIMSS scale average.
- Students in public schools with 75 percent or more of students eligible for free or reduced-price lunch had average scores lower than the TIMSS scale average. All other groups scored, on average, above the TIMSS scale average.

Table 46. Average science scores in grade 8 for selected student groups in public schools in Minnesota: 2011

	Science
Reporting groups	Grade 8
TIMSS scale average	500
U.S. average	525 *
Minnesota average	553 *
Sex	548 *
Female	559 *
Male	
Race/ethnicity	570 *
White	489
Black	512
Hispanic	511
Asian	537 *
Multiracial	
Percentage of public school students eligible for free	578 *
or reduced-price lunch	570 *
Less than 10 percent	547 *
10 to 24.9 percent	555 *
25 to 49.9 percent	458 *
50 to 74.9 percent	
75 percent or more	

${ }^{*} p<$.05. Difference between score and TIMSS scale average is significant. NOTE: Black includes African American, Hispanic includes Latino, and Asian includes Pacific Islander and Native Hawaiian. Racial categories exclude Hispanic origin. Not all race/ethnicity categories are shown, but they are all included in the U.S. and state totals shown throughout the report. The standard errors of the estimates are shown in table E-41 available at http://nces.ed.gov/ pubsearch/pubsinfor.asp?pubid=2013009.
SOURCE: International Association for the Evaluation of Educational Achievement (IEA), Trends in International Mathematics and Science Study (TIMSS), 2011.

TIMSS 2011 results for North Carolina

Science - Grades 4 and 8

- Public school students' average science score was 538 at grade 4 and 532 at grade 8 .
- Higher percentages of North Carolina 4th- and 8th-graders performed at or above each of the four TIMSS international benchmarks than the international medians. For example, 12 percent of 4th-graders and 12 percent of 8th-graders in North Carolina performed at or above the Advanced benchmark (625) compared to the international median of 5 percent at grade 4 and 4 percent at grade 8 (figures 11 and 12).
- Males outperformed females by 9 score points on average in science at grade 4 and by 12 score points at grade 8 (figures 13 and 14). At both grade 4 and grade 8, male and female students in North Carolina scored higher, on average, in science than the TIMSS scale average (table 48).
- At grade 4, White, Hispanic, Asian, and multiracial students scored, on average, above the TIMSS scale average. Black students' average scores were not measurably different from the TIMSS scale average.

Continued on next page

Table 47. Average science scores of 4th- and 8th-grade students in North Carolina public schools compared with other participating education systems: 2011

Grade 4	
Education systems higher than North Carolina	
Korea, Rep. of	Japan
Singapore	Russian Federation
Finland	Chinese Taipei-CHN

Grade 8	
Education systems higher than North Carolina	
Singapore	Japan
Massachusetts-USA	Minnesota-USA
Chinese Taipei-CHN	Finland
Korea, Rep. of	Alberta-CAN

Education systems not measurably different from North Carolina

Florida-USA	Slovak Republic
United States	Austria
Alberta-CAN	Netherlands
Czech Republic	England-GBR
Hong Kong-CHN	Denmark
Hungary	Germany
Sweden	Ontario-CAN

Education systems not measurably different from North Carolina	
Slovenia	Florida-USA
Russian Federation	United States
Colorado-USA	Hungary
Hong Kong-CHN	Ontario-CAN
England-GBR	Quebec-CAN
Indiana-USA	Australia
Connecticut-USA	
Education systems lower than North Carolina	
Israel	Bahrain
Lithuania	Thailand
New Zealand	Jordan
Sweden	Tunisia
Italy	Armenia
Ukraine	Saudi Arabia
California-USA	Malaysia
Norway	Syrian Arab Republic
Kazakhstan	Palestinian Nat'l Auth.
Alabama-USA	Georgia
Dubai-UAE	Oman
Turkey	Qatar
Iran, Islamic Rep. of	Macedonia, Rep. of
Romania	Lebanon
United Arab Emirates	Indonesia
Chile	Morocco
Abu Dhabi-UAE	Ghana

NOTE: Italics indicate participants identified and counted in this report as an education system and not as a separate country.
SOURCE: International Association for the Evaluation of Educational Achievement (IEA), Trends in International Mathematics and Science Study (TIMSS), 2011.

- At grade 8, White and Asian students scored, on average, above the TIMSS scale average while Black students scored lower, on average. Hispanic and multiracial students' average scores were not measurably different from the TIMSS scale average.
- In general, at grade 4 students in public schools with less than 75 percent of students eligible for free or reduced-price lunch scored higher, on average, than the TIMSS scale average. Average scores among students in public schools with 75 percent or more of students eligible for free or reduced-price lunch were not measurably different from the TIMSS scale average. At grade 8, students in public schools with less than 50 percent of students eligible for free or reduced-price lunch scored higher, on average, than the TIMSS scale average, while average scores for students in schools with 50 percent or more students eligible for free or reduced-price lunch were not measurably different from the TIMSS scale average.

Table 48. Average science scores in grade 4 and 8 for selected student groups in public schools in North Carolina: 2011

	Science	
Reporting groups	Grade 4	Grade 8
TIMSS scale average	500	500
U.S. average	544 *	525 *
North Carolina average	538 *	532 *
Sex		
Female	534 *	526 *
Male	543 *	537 *
Race/ethnicity		
White	565 *	565 *
Black	492	481 *
Hispanic	519 *	502
Asian	590 *	577 *
Multiracial	553 *	513
Percentage of public school students eligible for free or reduced-price lunch		
Less than 10 percent	\ddagger	595 *
10 to 24.9 percent	574 *	569 *
25 to 49.9 percent	555 *	538 *
50 to 74.9 percent	534 *	518
75 percent or more	498	504

\ddagger Reporting standards not met.
${ }^{*} p<.05$. Difference between score and TIMSS scale average is significant. NOTE: Black includes African American, Hispanic includes Latino, and Asian includes Pacific Islander and Native Hawaiian. Racial categories exclude Hispanic origin. Not all race/ethnicity categories are shown, but they are all included in the U.S. and state totals shown throughout the report. The standard errors of the estimates are shown in table E-42 available at http://nces.ed.gov/ pubsearch/pubsinfor.asp?pubid=2013009.
SOURCE: International Association for the Evaluation of Educational Achievement (IEA), Trends in International Mathematics and Science Study (TIMSS), 2011.

References

Beaton, A.E., and González, E. (1995). The NAEP Primer. Chestnut Hill, MA: Boston College.

Chowdhury, S., Chu, A., and Kaufman, S. (2001). Minimizing Overlap in NCES Surveys. Proceedings of the Survey Methods Research Section, American Statistical Association, pp. 174-179.

Ferraro, D., and Van de Kerckhove, W. (2006). Trends in International Mathematics and Science Study (TIMSS) 2003: Nonresponse Bias Analysis (NCES 2007-044). National Center for Education Statistics, Institute of Education Sciences, U.S. Department of Education. Washington, DC.

Foy, P., Joncas, M., and Zuhlke, O. (2009).TIMSS 2011 School Sampling Manual. Unpublished manuscript, Chestnut Hill, MA: Boston College.

Gonzales, P., Williams, T., Jocelyn, L., Roey, S., Kastberg, D., and Brenwald, S. (2008). Highlights From TIMSS 2007: Mathematics and Science Achievement of U.S. Fourthand Eighth-Grade Students in an International Context (NCES 2009-01 Revised). National Center for Education Statistics, Institute of Education Sciences, U.S. Department of Education. Washington, DC.

IEA Data Processing Center. (2010). TIMSS 2011 Data Entry Manager Manual. Hamburg, Germany: Author.

Martin, M.O., and Mullis, I.V.S. (Eds.). (2011). TIMSS and PIRLS Methods and Procedures. Retrieved from http://timssandpirls.bc.edu/methods/index.html.

Martin, M.O., Mullis, I.V.S., Foy, P., and Stanco, G.M. (2012). TIMSS 2011 International Results in Science. Chestnut Hill, MA: TIMSS \& PIRLS International Study Center, Boston College.

Matheson, N., Salganik, L., Phelps, R., Perie, M., Alsalam, N., and Smith, T. (1996). Education Indicators: An International Perspective (NCES 96-003). U.S. Department of Education. Washington, DC: National Center for Education Statistics.

Mullis, I.V.S., Martin, M.O., and Foy, P. (2005). IEA's TIMSS 2003 International Report on Achievement in the Mathematics Cognitive Domains: Findings From a Developmental Project. Chestnut Hill, MA: Boston College.

Mullis, I.V.S., Martin, M.O., Foy, P., and Arora, A. (2012). TIMSS 2011 International Results in Mathematics. Chestnut Hill, MA: TIMSS \& PIRLS International Study Center, Boston College.

Mullis, I.V.S., Martin, M.O., Ruddock, G.J., O'Sullivan, C.Y., and Preuschoff, C. (2009). TIMSS 2011 Assessment Frameworks. Chestnut Hill, MA: Boston College.

National Center for Education Statistics. (2002). NCES Statistical Standards (NCES 2003-601). Institute of Education Sciences, U.S. Department of Education. Washington, DC: Author.

United Nations Educational, Scientific and Cultural Organization (UNESCO). (1999). Classifying Educational Programmes Manual for ISCED-97 Implementation in OECD Countries (1999 Edition). Paris: Author. Retrieved April 9, 2008, from http://www.oecd.org/ dataoecd/7/2/1962350.pdf.

Westat. (2007). WesVar 5.0 User's Guide. Rockville, MD: Author.

Page intentionally left blank

Appendix A: Technical Notes

Introduction

The Trends in International Mathematics and Science Study (TIMSS) is a cross-national comparative study of the performance and schooling contexts of 4th- and 8thgrade students in mathematics and science. In this fifth cycle of TIMSS, mathematics and science assessments and associated questionnaires were administered in 57 education systems (45 of which were countries) at the 4th-grade level and 56 education systems (38 of which were countries) at the 8th-grade level during fall 2010 (in the Southern hemisphere) and during spring 2011 (in the Northern hemisphere). TIMSS is coordinated by the International Association for the Evaluation of Educational Achievement (IEA), with governmental sponsors in each participating country or education system. In the United States, TIMSS is sponsored by the National Center for Education Statistics (NCES), in the Institute of Education Sciences of the U.S. Department of Education.

As part of the 2011 administration of TIMSS in the United States, NCES conducted a study to link the National Assessment of Educational Progress (NAEP), a national U.S. student assessment in mathematics and science, with TIMSS so that states can measure their performance against international benchmarks. This NAEP-TIMSS Linking Study uses 8th-grade mathematics and science data from NAEP to project state-level scores onto the TIMSS scale. The goal of the study is to predict 2011 TIMSS mathematics and science scores at 8th-grade based on state NAEP performance without incurring the costs associated with every state participating separately in TIMSS. Results of the study are forthcoming as part of a separate report and technical notes are included here only as the linking study related to technical aspects of the main study, the focus of this report.

This appendix provides an overview of technical aspects of TIMSS 2011, including

- International requirements for sampling design, data collection, and response rates;
- Sampling, data collection, and response rates in the United States and for all participants;
- Test development;
- Recruitment, test administration, and quality assurance;
- Scoring and scoring reliability;
- Weighting, scaling, and plausible values;
- International benchmarks;
- Data limitations;

ت
ä

- Description of background variables;
- Confidentiality and disclosure limitations; and
- Statistical procedures.

More detailed information can be found in the TIMSS and PIRLS Methods and Procedures (Martin and Mullis 2011).

International requirements for sampling, data collection, and response rates

In order to ensure comparability of the data across countries, the IEA provided detailed international requirements on the various aspects of data collection described here and implemented quality control procedures. Participating countries were obliged to follow these requirements. These requirements regarding the target populations, sampling design, sample size, exclusions, and defining participation rates are described below.

Target populations

In order to identify comparable populations of students to be sampled, the IEA defined the target populations as follows (Martin and Mullis 2011):

Fourth-grade student population. The international desired target population (also referred to as the International Target Population) is all students enrolled in the grade that represents 4 years of schooling, counting from the first year of the International Standard Classification of Education (ISCED) Level $1,{ }^{1}$ providing that the mean age at the time of testing is at least 9.5 years.

Eighth-grade student population. The international desired target population is all students enrolled in the grade that represents 8 years of schooling, counting from the first year of ISCED Level 1, providing that the mean age at the time of testing is at least 13.5 years.

Teacher population. The target population is all mathematics and science teachers linked to the selected students. Note that these teachers are not a representative sample of teachers within the country. Rather, they are the mathematics and science teachers who teach a representative sample of students in two grades within the country (grades 4 and 8 in the United States).
${ }^{1}$ The ISCED was developed by the United Nations Educational, Scientific, and Cultural Organization (UNESCO) to facilitate the comparability of educational levels across countries. ISCED Level 1 begins with the first year of formal, academic learning (UNESCO 1999). In the United States, ISCED Level 1 begins at grade 1.

School population. The target population is all eligible schools ${ }^{2}$ containing either one or more 4th-grade classrooms or one or more 8th-grade classrooms.

Although participating education systems were expected to include all students in the International Target Population, sometimes it was not feasible to include all of these students because of geographic or linguistic constraints specific to the country or territory. Thus, each participating education system had its own "national" desired target population (also referred to as the National Target Population), which was the International Target Population reduced by the exclusions of those sections of the population that were not possible to assess. Working from the National Target Population, each participating education system had to operationalize the definition of its population for sampling purposes: i.e., define their "national" defined target population (referred to as the National Defined Population). While each education system's National Defined Population ideally coincides with its National Target Population, in reality, there may be additional exclusions (e.g., of regions or school types) due to constraints of operationalizing the assessment.

Sampling design

It is not feasible to assess every 4th- and 8th-grade student in the United States. Thus, as is done in all participating countries and education systems, a representative sample of 4th- and 8th-grade students was selected. The sample design employed by the TIMSS 2011 assessment is generally referred to as a two-stage stratified cluster sample. The sampling units at each stage were defined as follows.

First-stage sampling units. In the first stage of sampling, sampling statisticians selected individual schools with a probability-proportionate-to-size (PPS) approach, which means that each school's probability of selection is proportional to the estimated number of students enrolled in the target grade. Prior to sampling, statisticians assigned schools in the sampling frame to a predetermined number of explicit or implicit strata. Then, sampling staff identified sample schools using a PPS systematic sampling method. Statisticians also identified substitute schools (schools to replace original sampled school that refused to participate). The original and substitute schools were identified simultaneously.

Second-stage sampling units. In the second stage of sampling, statisticians selected classrooms within sampled schools using sampling software provided by the International Study Center at Boston College. The software uses a sampling algorithm for selecting classes that standardized the class sampling across schools and assures uniformity in the class selection procedures across participants. The software
${ }^{2}$ Some sampled schools may be considered ineligible for reasons noted in the "School exclusions" section below. All other schools are considered eligible.
identified at least one classroom from a list of eligible classrooms that sampling staff prepared for each target grade. In various countries and education systems, including the United States, more than one eligible classroom per target grade per school was selected when possible. All students in sampled classrooms were selected for assessment.

Sample size for the main survey

TIMSS guidelines call for a minimum of 150 schools to be sampled per grade, with a minimum of 4,000 students assessed per grade. The basic sample design of one classroom per target grade per school was designed to yield a total sample of approximately 4,500 students per population. Countries with small class sizes or less than 30 students per school were directed to consider sampling more schools, more classrooms per school, or both, to meet the minimum target of 4,000 tested students.

In the United States, a sample of 450 schools was drawn at 4th-grade and 600 schools at 8th-grade. These were larger sample sizes than used in previous administrations of TIMSS. The reason for a larger sample than in the past at 4th grade was that in 2011 both TIMSS (administered every 4 years) and another study sponsored by the IEA, the Progress in International Reading Literacy Study (PIRLS) (administered every 5 years at 4th grade), happened to coincide. Because the United States was participating in both studies, and because both studies required a 4th-grade sample of schools and students, the decision was made to draw a larger sample of schools and to request that both studies be administered in the same schools (where feasible), albeit to separate classroom samples of students. ${ }^{3}$ Thus, TIMSS (4th grade) and PIRLS in the United States were administered in the same schools but to separately sampled classrooms of students.

The reason for a larger sample than in the past at 8th grade was that the NAEP-TIMSS Linking Study (described above) required that NAEP be administered in the same schools in which TIMSS was administered, with one intact mathematics classroom randomly assigned to TIMSS and another to the linking study. Given that in previous administrations of TIMSS, two 8th-grade classrooms were sampled per school to take TIMSS, this requirement led to a doubling of the previous TIMSS sample size (from 300 to 600 schools) so that the total number of sampled TIMSS classrooms remained the same.

[^27]In addition to the national school samples at 4th and 8th grade, state samples were also drawn for two states at 4th grade and nine states at 8th grade. These additional school samples are described below.

Exclusions

The following discussion draws on the TIMSS 2011 School Sampling Manual (Foy, Joncas, and Zuhlke 2009). All schools and students excluded from the national defined target population are referred to as the excluded population. Exclusions could occur at the school level, with entire schools being excluded, or within schools, with specific students or entire classrooms excluded. TIMSS 2011 did not provide accommodations for students with disabilities or students who were unable to read or speak the language of the test. The IEA requirement with regard to exclusions is that they should not exceed more than 5 percent of the national desired target population (Foy, Joncas, and Zuhlke 2009). The specifications for school and student exclusions were applied equally to the U.S. national and state samples.

School exclusions. Education systems could exclude schools that

- are geographically inaccessible;
- are of extremely small size;
- offer a curriculum, or school structure, radically different from the mainstream educational system; or
- provide instruction only to students in the excluded categories defined under "within-school exclusions," such as schools for the blind.

Within-school exclusions. Education systems were asked to adopt the following international within-school exclusion rules to define excluded students:

- Students with intellectual disabilities-Students who, in the professional opinion of the school principal or other qualified staff members, are considered to have intellectual disabilities or who have been tested psychologically as such. This includes students who are emotionally or mentally unable to follow even the general instructions of the test. Students were not to be excluded solely because of poor academic performance or normal disciplinary problems.
- Students with functional disabilities-Students who are permanently physically disabled in such a way that they cannot perform in the TIMSS testing situation. Students with functional disabilities who are able to respond were to be included in the testing.
- Non-English-language speakers-Students who are unable to read or speak the language(s) of the test and would be unable to overcome the language barrier of the test. Typically, a student who had received less than one year of instruction in the language(s) of the test was to be excluded.

Defined participation rates

In order to minimize the potential for response biases, the IEA developed participation or response rate standards that apply to all participating education systems and govern both whether or not a participating education system's data are included in the TIMSS 2011 international dataset as well as the way in which national statistics are presented in the international reports. These standards were set using composites of response rates at the school, classroom, and student and teacher levels; moreover, response rates were calculated with and without the inclusion of substitute schools (selected to replace original sample schools refusing to participate).

The response rate standards determine how a participant's data will be reported in the international reports. These standards take the following two forms, distinguished primarily by whether or not meeting the school response rate of 85 percent requires the counting of substitute schools.

Category 1: Met requirements. Participants that meet all of the following conditions are considered to have fulfilled the IEA requirements: (a) a minimum school participation rate of 85 percent, based on original (sampled) schools only; (b) a minimum classroom participation rate of 95 percent, from both original and substitute schools; and (c) a minimum student participation rate of 85 percent, from both original and substitute schools.

Category 2: Met requirements after substitutes. In the case of participants not meeting the category 1 requirements, provided that at least 50 percent of schools in the original sample participate, a participating education system's data are considered acceptable if the following requirements are met: a minimum combined school, classroom, and student participation rate of 75 percent, based on the product of the participation rates described above. That is, the product of (a), (b), and (c), as defined in the category 1 standard, must be greater than or equal to 75 percent.

Participants satisfying the category 1 standard are included in the international tabular presentations without annotation. Those able to satisfy only the category 2 standard are included as well but are annotated to indicate their response rate status. The data from participants failing to meet either standard are presented separately in the international tabular presentations.

Sampling, data collection, and response rates in the United States and for all participants

The U.S.TIMSS national sample design

In the United States and most other participating countries and education systems, the target populations of students corresponded to the 4th and 8th grades. In sampling these populations, TIMSS used a two-stage stratified cluster sampling design (as explained above under "Sampling design"). ${ }^{4}$ The U.S. sampling frame was explicitly stratified by three categorical stratification variables: percentage of students eligible for free or reduced-price lunch, school control (public or private), and region of the country (Northeast, Central, West, Southeast). ${ }^{5}$ The U.S. sampling frame was implicitly stratified (that is, sorted for sampling) by two categorical stratification variables: community type (four categories) ${ }^{6}$ and minority status (i.e., above or below 15 percent of the student population).

The first stage made use of a systematic PPS technique to select schools for the original sample from a sampling frame based on the 2010 National Assessment of Educational Progress (NAEP) school sampling frame. ${ }^{7}$ Data for public schools were taken from the Common Core of Data (CCD), and data for private schools were taken from the Private School Universe Survey (PSS). In addition, for each original school selected, the two neighboring schools in the sampling frame were designated as substitute schools. The first school following the original sample school was the first substitute and the first school preceding it was the second substitute. If an original school refused to participate, the first substitute was contacted. If that school also refused to participate, the second substitute was contacted. There were several

[^28]constraints on the assignment of substitutes. One sampled school was not allowed to substitute for another, and a given school could not be assigned to substitute for more than one sampled school. Furthermore, substitutes were required to be in the same implicit stratum as the sampled school.

The second stage consisted of selecting intact mathematics classes within each participating school. Schools provided lists of 4th- or 8th-grade classrooms. Within schools, classrooms with fewer than 15 students were collapsed into pseudo-classrooms, so that each classroom in the school's classroom sampling frame had at least 20 students. ${ }^{8}$ An equal probability sample of two classrooms ${ }^{9}$ was identified from the classroom frame for the school. In schools where there was only one classroom, this classroom was selected with certainty. At the 4th-grade level, 16 pseudo-classrooms were created prior to classroom sampling and 8 of these were selected in the final 4th-grade classroom sample. At the 8thgrade level, 503 pseudo-classrooms were created, of which 64 were included in the final classroom sample. All students in sampled classrooms and pseudo-classrooms were selected for assessment.

In this way, the overall sample design for the United States results in an approximately self-weighting sample of students, with each 4th- or 8th-grade student having a roughly equal probability of selection. Note that in small schools, a higher proportion of the classes (and therefore of the students) is selected, but this higher rate of selecting students in small schools is offset by a lower selection rate of small schools, as schools are selected with probability proportional to size.

Additional sampling requirements for TIMSS 2011 in the United States: The NAEP-TIMSS Linking Study

The NAEP-TIMSS Linking Study administered NAEP and TIMSS booklets in both the NAEP and TIMSS administration windows under first NAEP and then TIMSS testing conditions. This was done to gather examinee-level correlations between NAEP and TIMSS scores that will be used to improve the accuracy of the predicted TIMSS state scores. Eight states were invited to participate in TIMSS separately from the nation at the 8th grade (Alabama, California, Colorado, Connecticut, Indiana, Massachusetts, Minnesota, and North Carolina) and one additional state, Florida, chose to participate itself. The actual TIMSS data from these nine states will be used to

[^29]validate the predicted TIMSS average scores based on the linking study. The states invited to participate were selected based on state enrollment size and willingness to participate, as well as on their general NAEP performance (above or below the national average on NAEP), their previous experience in benchmarking to TIMSS, and their regional distribution.

To facilitate the linking study, NAEP added a science assessment at the national and state levels during the January-March 2011 collection period, with all states and the District of Columbia agreeing to participate. In addition, during the NAEP assessment window, a separate national sample of students was administered a set of "braided" booklets that included both NAEP and TIMSS blocks of items. During the NAEP assessment window, the braided booklets were designed to appear as similar as possible to a regular NAEP assessment booklet and were administered under the same conditions as NAEP.

During the TIMSS data collection period in spring 2011, TIMSS added state-level assessments in the nine states noted above as well as a separate national sample of students who were also administered a set of braided booklets that included both NAEP and TIMSS blocks of items. During the TIMSS assessment window, the braided booklets were designed to appear as similar as possible to a regular TIMSS assessment booklet and were administered under the same conditions as TIMSS. The inclusion of two additional samples of students who were administered the braided booklets during the NAEP and TIMSS assessment windows is similar to the braided booklet design used for recent NAEP studies to maintain NAEP trends in 2009 reading and 12thgrade mathematics.

Within each school, selected intact mathematics classes at 8th grade were randomly designated as a TIMSS class or a NAEP-TIMSS Linking Study class. The students in the linking study classes were administered the braided TIMSS-NAEP booklets. Those in the TIMSS classes were administered the regular TIMSS booklets.

The national and state samples were selected to coordinate the main NAEP and TIMSS samples. The data were collected by the regular NAEP field staff in winter and the regular TIMSS field staff in spring. The responses to the assessment questions were scored using the same scoring staff with the same training and quality control procedures that NAEP and TIMSS normally use. The results of the effort to link NAEP and TIMSS are to be released in a separate report from NCES.

Additional state samples

In addition to the states that participated at 8th grade, North Carolina also participated in TIMSS at 4th grade. North Carolina, like Florida at 8th grade, elected to participate in TIMSS on its own. The process for selecting the North

Carolina school sample was the same as that employed in selecting the other state school samples (described below).

Selecting school samples for the states

The TIMSS state samples included only public schools. The school frame was identical to the national frame of public schools in those states. The state samples included the public schools in each state that were previously selected as part of the TIMSS national sample plus a supplement of schools. The sample target was 100 assessed classrooms. The target reference is classrooms because in the national design one class in each school is selected for TIMSS and one for the NAEP-TIMSS Linking Study. Thus, only one class from each of the national public schools was included in the state assessment. The supplemental sample of schools selected for each state followed the normal TIMSS procedure of selecting two classes per school. The additional number of schools needed in each state is then ([100-\# national public schools] / 2) plus an additional five schools per state to account for ineligible schools (schools with no students in the target grade).

The state sample was selected using a version of the Keyfitz procedure. Chowdhury, Chu, and Kaufman (2001) have described the implementation of the procedure. The method is generally used to minimize overlap but it can also be used to maximize overlap by ordering the rows in descending order of the response load indicator. By following the process outlined in table 2 of the paper, the rows in the table can be thought of as a hierarchy of selection preference where the top row maximizes the probability and the bottom row minimizes it. This property allowed us to maximize the overlap with the TIMSS national sample (in fact, select all national public schools) and minimize the overlap with the NAEP state operational public school sample or "Alpha sample."10 This minimization was undertaken to reduce the burden for schools selected in the NAEP sample and to improve response rates. This was accomplished by partitioning the frame into the following three groups shown in order as in table 2 of the paper. The three groups are:

1. public schools selected for the TIMSS national sample (including schools also selected for the NAEP Alpha sample);
2. public schools not selected for either the TIMSS national or NAEP Alpha samples; and
3. public schools selected for the NAEP Alpha sample and not the TIMSS national sample.

The method guarantees all schools in group 1 will be selected with certainty since the probability of being selected for the validation sample is always larger than that for being selected for the national sample, because more schools were selected
${ }^{10}$ For a complete definition of the NAEP Alpha sample, see the NCES NAEP glossary at http://nces.ed.gov/nationsreportcard/glossary.asp\#alpha_sample.
in each state sample (the national public schools plus a state supplement of public schools) than in the national sample with the frames being identical. The method minimized the overlap with schools in group 3 (NAEP Alpha sample) and selected the majority of the state supplement from schools in group 2.

U.S.TIMSS 4th-grade sample

School sample. The 4th-grade national school sample consisted of 450 schools (both public and private). As described previously, the joint administration of TIMSS and PIRLS at 4th grade required a larger sample of schools to ensure an adequate number of participating classes and students in both studies. Twelve ineligible schools and one excluded school were identified on the basis that they served special student populations, or had closed or altered their grade makeup since the sampling frame was developed. This left 437 schools eligible to participate, and 347 agreed to do so. The unweighted school response rate before substitution then was 79 percent. The analogous weighted school response rate was also 79 percent (see table A-1) and is given by the following formula:
$\begin{aligned} & \text { weighted school response } \\ & \text { rate before replacement }\end{aligned}=\frac{\sum_{i \in Y} W_{i} E_{i}}{\sum_{i \in(Y \cup N)} W_{i} E_{i}}$
where Y denotes the set of responding original-sample schools; N denotes the set of eligible non-responding original sample schools; Wi denotes the base weight for school i; Wi = 1/Pi, where Pi denotes the school selection probability for school i; and $E i$ denotes the enrollment size of age-eligible students, as indicated in the sampling frame.

In addition to the 347 participating schools from the original sample, 22 substitute schools participated for a total of 369 participating schools at the 4th grade in the United States (see table A-2). This gives a weighted (and unweighted) school participation rate after substitution of 84 percent (see table A-1). ${ }^{11}$

Classroom sample. Schools agreeing to participate in TIMSS were asked to list their 4th-grade mathematics classes as the basis for sampling at the classroom level. At this time, schools were given the opportunity to identify special classes-classes in which all or most of the students had intellectual or functional disabilities or were non-English language speakers. While these classes were regarded as eligible, the students as a group were treated as "excluded" since, in the opinion of the school, their disabilities or language capabilities would

[^30]render meaningless their performance on the assessment. Fifty 4th-grade schools excluded classes and 681 students were excluded from participation in TIMSS as a result.

Prior to sampling, classes with fewer than 15 students were collapsed with other classes into what are called pseudoclassrooms. Creating pseudo-classrooms in this way ensured that all eligible classrooms in a school had at least 20 students. Up to four eligible classrooms were selected with classes being randomly assigned to TIMSS or PIRLS. In schools with only one classroom, this classroom was selected with certainty and randomly assigned to TIMSS or PIRLS. Some 1,257 classrooms were selected as a result of this process. All selected classrooms participated in TIMSS, yielding a classroom response rate of 100 percent (Martin et al. 2012, exhibit C.8).

Student sample. Schools were asked to list the students in each of the classrooms, along with the teachers who taught mathematics and science to these students. A total of 14,205 students were listed as a result. These students are identified by IEA as "sampled students in participating schools" (see table A-2).

This pool of students is reduced by within-school exclusions and withdrawals. At the time schools listed the students in the sampled classrooms, they had the opportunity to identify particular students who were not suited to take the test because of physical or intellectual disabilities (i.e., students with disabilities who had been mainstreamed) or because they were non-English-language speakers. Schools identified a total of 839 students they wished to have excluded from the assessment. By the time of the assessment a further 185 of the listed students had withdrawn from the school or classroom. In total, then, the pool of 14,205 sampled students was reduced by 1,024 students (839 excluded and 185 withdrawn) to yield 13,181 "eligible" students. The number of eligible students is used as the base for calculating student response rates (Martin et al. 2012, exhibit C.6).

The number of eligible students was further reduced on assessment day by 612 student absences, leaving 12,569 "assessed students" identified as having completed a TIMSS 2011 assessment booklet (see table A-2). IEA defines the student response rate as the number of students assessed as a percentage of the number of eligible students which, in this case, yields a weighted (and unweighted) student response rate of 95 percent (see table A-1).

Note that the 681 students excluded because whole classes were excluded do not figure in the calculation of student response rates. They do, however, figure in the calculation of the coverage of the International Target Population. Together, these 681 students excluded prior to classroom sampling, plus the 839 within-class exclusions, resulted in an overall student exclusion rate of 7.0 percent (see table A-1 and Martin et al. 2012, exhibit C.3). The reported coverage
of the International Target Population then is 93 percent (see Martin et al. 2012, exhibit C.3).

Combined participation rates. For the results for an education system to be included in the TIMSS international report without a response rate annotation, the IEA requires a "combined" or overall response rate-expressed as the product of (a) the (unrounded) weighted school response rate without substitute schools and (b) the (unrounded) weighted student response rate—of at least 75 percent (after rounding to the nearest whole percent). The overall response rate for the United States, 75.72 percent without substitute schools, meets this requirement. However, the United States did include substitute schools because its school-level response rate was less than 85 percent, and, absent advance knowledge of the student-level response rate, introducing substitute schools was a prudent approach to take. For the results of an education system to be included in the TIMSS international report without a student inclusion annotation, the IEA requires a student inclusion rate of at least 95 percent. Because 7 percent of the 4th-grade student population was excluded in the United States, the overall U.S. student inclusion rate was 93 percent. For this reason, the U.S. 4th-grade results in the TIMSS international report carry a coverage annotation indicating that coverage of the defined student population was less than the IEA standard of 95 percent.

Tables A-1 and A-2 are extracts from the international report exhibits noted above and are designed to summarize information on school and student responses rates and coverage of the 4th- and 8th-grade target populations in each nation.

U.S.TIMSS 8th-grade sample

School sample. The 8th-grade national school sample consisted of 600 schools. Twenty-two ineligible original schools and four excluded schools were identified on the basis that they served special student populations, or had closed or altered their grade makeup since the sampling frame was developed. This left 574 schools eligible to participate and 499 agreed to do so. The unweighted original school response rate before substitution then was 87 percent. The analogous weighted school response rate was 87 percent (see table A-1).

In addition to the 499 participating schools from the original sample, 2 substitute schools participated for a total of 501 participating schools at the 8th grade in the United States (see table A-2). This gives a weighted (and unweighted) school
participation rate after substitution of 87 percent (see table $\mathrm{A}-1$). ${ }^{12}$

Classroom sample. Schools agreeing to participate were asked to list their 8th-grade mathematics classes as the basis for sampling at the classroom level. At this time, schools were given the opportunity to identify special classes-classes in which all or most of the students had intellectual or functional disabilities or were non-English-language speakers. While these classes were regarded as eligible, the students as a group were treated as "excluded" since, in the opinion of the school, their disabilities or language capabilities would render meaningless their performance on the assessment. A total of 223 schools excluded classrooms from participation in TIMSS. This resulted in the exclusion of 4,650 students.

Classrooms with fewer than 15 students were collapsed into pseudo-classrooms prior to sampling so that each eligible classroom in a school had at least 20 students. Two eligible classrooms were selected per school where possible. In schools where there was only one eligible classroom, this classroom was selected with certainty and was randomly assigned to TIMSS or the TIMSS-NAEP Linking Study. All selected classrooms participated in TIMSS yielding a classroom response rate of 100 percent (Martin et al. 2012, exhibit C.9).

Student sample. Schools were asked to list the students in each of the sampled mathematics classrooms, along with the teachers who taught mathematics and science to these students. A total of 11,864 students were listed as being in the selected classrooms. These students are identified by IEA as "sampled students in participating schools" (see table A-2).

This pool of students is reduced by within-school exclusions and withdrawals. At the time schools listed the students in sampled classrooms, they had the opportunity to identify particular students who were not suited to take the test because of physical or intellectual disabilities (i.e., students with disabilities who had been mainstreamed) or because they were non-English language speakers. Schools identified a total of 398 students they wished to have excluded from the assessment; and, by the time of the assessment, a further 302 of the listed students had withdrawn from the school or classroom. In total then, the pool of 11,864 sampled students was reduced by 700 students (398 excluded and 302 withdrawn) to yield 11,164 "eligible" students. The number of eligible students is used as the base for calculating student response rates (Martin et al. 2012, exhibit C.7).

[^31]Table A-1. Coverage of target populations, school participation rates, and student response rates, by grade and education system: 2011

Education system	Grade 4						
	Average age at time of tesing	Percentage of international desired population coverage	$\begin{array}{r} \text { National } \\ \text { desired } \\ \text { population } \\ \text { overall } \\ \text { exclusion rate } \\ \hline \end{array}$	Weighted school participation rate before substitution	Weighted school participation rate after substitution	$\begin{array}{r} \text { Weighted } \\ \text { student } \\ \text { response rate } \\ \hline \end{array}$	Combined weighted school participation and student response rate with substitute schools
Armenia	10	100	2	100	100	98	98
Australia	10	100	4	96	98	95	93
Austria	10	100	5	100	100	98	98
Azerbaijan	10	100	7	84	100	100	100
Bahrain	10	100	1	92	92	98	90
Belgium (Flemish)-BEL	10	100	5	76	95	98	92
Chile	10	100	4	86	99	96	95
Chinese Taipei-CHN	10	100	1	100	100	99	99
Croatia	11	100	8	99	100	95	95
Czech Republic	10	100	5	90	99	95	94
Denmark	11	100	6	79	92	95	87
England-GBR	10	100	2	81	83	94	78
Finland	11	100	3	97	99	96	96
Georgia	10	92	5	97	98	99	96
Germany	10	100	2	96	99	96	95
Hong Kong-CHN	10	100	9	87	88	93	82
Hungary	11	100	4	98	99	97	96
Iran, Islamic Rep. of	10	100	5	100	100	99	99
Ireland	10	100	3	97	99	95	95
Italy	10	100	4	81	98	97	95
Japan	11	100	3	96	99	97	97
Kazakhstan	10	100	6	99	100	99	99
Korea, Rep. of	10	100	3	100	100	98	98
Kuwait	10	78	0	99	99	94	91
Lithuania	11	93	6	94	100	94	94
Malta	10	100	4	100	100	95	95
Morocco	11	100	2	100	100	97	96
Netherlands	10	100	4	49	82	97	79
New Zealand	10	100	5	83	96	94	90
Northern Ireland-GBR	10	100	3	62	85	93	79
Norway	10	100	4	57	82	85	70
Oman	10	100	1	98	98	98	96
Poland	10	100	4	100	100	96	96
Portugal	10	100	3	87	98	94	92
Qatar	10	100	6	100	100	99	99
Romania	11	100	4	99	100	98	97
Russian Federation	11	100	5	100	100	98	98
Saudi Arabia	10	100	2	95	100	99	99
Serbia	11	100	9	97	100	97	97
Singapore	10	100	6	100	100	96	96
Slovak Republic	10	100	5	95	99	96	96
Slovenia	10	100	3	96	97	97	94
Spain	10	100	5	96	99	97	97
Sweden	11	100	4	97	99	92	91
Thailand	11	100	2	85	100	99	99
Tunisia	10	100	2	100	100	99	99
Turkey	10	100	3	97	100	98	98
United Arab Emirates	10	100	3	100	100	97	97
United States	10	100	7	79	84	95	80
Yemen	11	100	4	99	99	97	95

Table A-1. Coverage of target populations, school participation rates, and student response rates, by grade and education system: 2011-Continued

Benchmarking education systems	Grade 4						
	Average age at time of tesing	Percentage of international desired population coverage	National desired population overall exclusion rate	Weighted school participation rate before substitution	$\begin{array}{r} \text { Weighted } \\ \text { school } \\ \text { participation } \\ \text { rate after } \\ \text { substitution } \\ \hline \end{array}$	$\begin{array}{r} \text { Weighted } \\ \text { student } \\ \text { response rate } \\ \hline \end{array}$	Combined weighted school participation and student response rate with substitute schools
Alberta-CAN	10	100	8	98	99	96	95
Ontario-CAN	10	100	5	97	98	96	94
Quebec-CAN	10	100	4	95	96	95	91
Abu Dhabi-UAE	10	100	3	99	99	98	97
Dubai-UAE	10	100	5	100	100	96	96
Florida-USA	10	89	12	96	96	95	91
North Carolina-USA	10	93	10	94	94	95	89

[^32]Table A-1. Coverage of target populations, school participation rates, and student response rates,
by grade and education system: 2011-Continued

Education system	Grade 8						
	Average age at time of tesing	Percentage of international desired population coverage	National desired population overall exclusion rate	Weighted school participation rate before substitution	Weighted school participation rate after substitution	$\begin{array}{r} \text { Weighted } \\ \text { student } \\ \text { response rate } \\ \hline \end{array}$	Combined weighted school participation and student response rate with substitute schools
Armenia	15	100	2	100	100	97	97
Australia	14	100	3	96	98	90	88
Bahrain	14	100	2	99	99	98	97
Chile	14	100	3	88	99	95	95
Chinese Taipei-CHN	14	100	1	100	100	99	99
England-GBR	14	100	2	75	79	89	70
Finland	15	100	3	97	98	95	93
Georgia	14	93	5	97	98	98	97
Ghana	16	100	1	100	100	97	97
Hong Kong-CHN	14	100	5	77	78	96	75
Hungary	15	100	4	98	99	96	95
Indonesia	14	100	3	100	100	96	96
Iran, Islamic Rep. of	14	100	2	100	100	99	99
Israel	14	100	23	94	100	92	92
Italy	14	100	5	83	97	96	93
Japan	15	100	3	85	92	94	87
Jordan	14	100	0	100	100	96	96
Kazakhstan	15	100	5	99	100	98	98
Korea, Rep. of	14	100	2	100	100	99	99
Lebanon	14	100	1	90	98	96	94
Lithuania	15	93	5	92	99	93	92
Macedonia, Rep. of	15	100	3	100	100	95	95
Malaysia	14	100	0	100	100	98	98
Morocco	15	100	0	100	100	94	94
New Zealand	14	100	3	87	98	90	88
Norway	14	100	2	89	89	94	84
Oman	14	100	1	99	99	98	97
Palestinian Nat'l Authority	14	100	2	100	100	98	98
Qatar	14	100	5	99	99	99	99
Romania	15	100	1	99	100	99	99
Russian Federation	15	100	6	100	100	98	98
Saudi Arabia	14	100	1	98	100	98	98
Singapore	14	100	6	100	100	95	95
Slovenia	14	100	2	96	98	94	92
Sweden	15	100	5	97	98	94	92
Syrian Arab Republic	14	100	2	99	99	93	92
Thailand	14	100	2	92	100	99	99
Tunisia	14	100	0	99	99	97	97
Turkey	14	100	2	99	100	97	97
Ukraine	14	100	3	98	100	98	98
United Arab Emirates	14	100	3	100	100	97	97
United States	14	100	7	87	87	94	81

See notes at end of table.

Table A-1. Coverage of target populations, school participation rates, and student response rates, by grade and education system: 2011-Continued

Benchmarking education systems	Grade 8						
	Average age at time of tesing	Percentage of international desired population coverage	National desired population overall exclusion rate	Weighted school participation rate before substitution	Weighted school participation rate after substitution	$\begin{array}{r} \text { Weighted } \\ \text { student } \\ \text { response rate } \\ \hline \end{array}$	Combined weighted school participation and student response rate with substitute schools
Alberta-CAN	14	100	7	91	99	93	92
Ontario-CAN	14	100	6	97	98	95	93
Quebec-CAN	14	100	5	96	96	93	88
Abu Dhabi-UAE	14	100	2	99	99	97	96
Dubai-UAE	14	100	4	99	99	96	95
Alabama-USA	14	92	5	92	92	92	84
California-USA	14	91	6	85	88	94	82
Colorado-USA	14	94	4	84	89	94	84
Connecticut-USA	14	90	9	100	100	94	94
Florida-USA	14	89	7	94	94	91	84
Indiana-USA	14	90	6	94	97	96	93
Massachusetts-USA	14	89	8	100	100	96	96
Minnesota-USA	14	90	4	91	98	95	94
North Carolina-USA	14	93	11	98	98	95	93

NOTE: Educations systems in the Southern hemisphere administered "TIMSS 2011" in the fall of 2010 while those in the Northern hemisphere administered the assessment in the spring of 2011. Italics indicate participants identified and counted in this report as an education system and not as a separate country. The international desired population refers to the sample and not the responding schools, classes, and students.
SOURCE: International Association for the Evaluation of Educational Achievement (IEA), Trends in International Mathematics and Science Study (TIMSS), 2011.

Table A-2. Total number of schools and students, by grade and education system: 2011

Education system	Grade 4						
	Schools in original sample	Eligible schools in original sample	Schools in original sample that participated	Substitute schools	Total schools that participated	Sampled students in participating schools	Students assessed
Armenia	150	150	150	0	150	5,292	5,146
Australia	290	284	275	5	280	6,709	6,146
Austria	160	158	158	0	158	4,976	4,668
Azerbaijan	170	169	142	27	169	5,098	4,882
Bahrain	174	172	159	0	159	4,213	4,083
Belgium (Flemish)-BEL	156	150	114	28	142	5,219	4,849
Chile	203	202	169	31	200	6,010	5,585
Chinese Taipei-CHN	150	150	150	0	150	4,376	4,284
Croatia	152	152	150	2	152	5,097	4,584
Czech Republic	180	178	161	16	177	4,895	4,578
Denmark	240	235	186	30	216	4,452	3,987
England-GBR	150	150	122	3	125	3,689	3,397
Finland	150	146	141	4	145	4,917	4,638
Georgia	180	177	172	1	173	4,958	4,799
Germany	200	199	190	7	197	4,229	3,995
Hong Kong-CHN	154	154	134	2	136	4,330	3,957
Hungary	150	150	146	3	149	5,488	5,204
Iran, Islamic Rep. of	250	244	244	0	244	5,932	5,760
Ireland	152	151	147	3	150	4,836	4,560
Italy	205	205	166	36	202	4,529	4,200
Japan	150	150	144	5	149	4,595	4,411
Kazakhstan	150	149	147	2	149	4,521	4,382
Korea, Rep. of	150	150	150	0	150	4,494	4,334
Kuwait	150	150	148	0	148	4,431	4,142
Lithuania	160	154	145	9	154	5,140	4,688
Malta	99	96	96	0	96	3,958	3,607
Morocco	289	287	286	0	286	8,414	7,841
Netherlands	151	148	75	53	128	3,461	3,229
New Zealand	189	189	154	26	180	6,172	5,572
Northern Ireland-GBR	160	160	100	36	136	3,942	3,571
Norway	150	145	84	35	119	3,881	3,121
Oman	338	333	327	0	327	10,840	10,411
Poland	150	150	150	0	150	5,316	5,027
Portugal	150	150	132	15	147	4,384	4,042
Qatar	175	167	166	0	166	4,394	4,117
Romania	150	148	147	1	148	4,879	4,673
Russian Federation	202	202	202	0	202	4,693	4,467
Saudi Arabia	175	171	163	8	171	4,625	4,515
Serbia	160	156	152	4	156	4,603	4,379
Singapore	176	176	176	0	176	6,687	6,368
Slovak Republic	200	198	187	10	197	5,933	5,616
Slovenia	202	201	193	2	195	4,674	4,492
Spain	152	152	147	4	151	4,461	4,183
Sweden	161	153	148	4	152	5,235	4,663
Thailand	168	168	143	25	168	4,556	4,448
Tunisia	222	222	222	0	222	5,057	4,912
Turkey	260	257	251	6	257	7,905	7,479
United Arab Emirates	478	460	459	0	459	15,428	14,720
United States	450	437	347	22	369	14,205	12,569
Yemen	223	218	216	0	216	8,794	8,058

See notes at end of table.

Table A-2. Total number of schools and students, by grade and education system: 2011-Continued

Benchmarking education systems	Grade 4						
	Schools in original sample	Eligible schools in original sample	Schools in original sample that participated	Substitute schools	Total schools that participated	Sampled students in participating schools	Students assessed
Alberta-CAN	150	144	141	2	143	4,086	3,645
Ontario-CAN	150	149	145	1	146	5,022	4,570
Quebec-CAN	200	197	189	1	190	4,529	4,235
Abu Dhabi-UAE	168	165	164	0	164	4,308	4,164
Dubai-UAE	152	139	139	0	139	6,553	6,151
Florida-USA	81	80	77	0	77	3,121	2,661
North Carolina-USA	49	49	46	0	46	2,104	1,792

See notes at end of table.

Table A-2. Total number of schools and students, by grade and education system: 2011—Continued

Education system	Grade 8						
	Schools in original sample	Eligible schools in original sample	Schools in original sample that participated	Substitute schools	Total schools that participated	Sampled students in participating schools	Students assessed
Armenia	153	153	153	0	153	6,057	5,846
Australia	290	287	276	1	277	9,007	7,556
Bahrain	97	96	95	0	95	4,960	4,640
Chile	197	196	166	27	193	6,290	5,835
Chinese Taipei-CHN	150	150	150	0	150	5,166	5,042
England-GBR	150	150	113	5	118	4,382	3,842
Finland	150	148	143	2	145	4,549	4,266
Georgia	180	175	171	1	172	4,779	4,563
Ghana	163	161	161	0	161	8,073	7,323
Hong Kong-CHN	150	150	116	1	117	4,261	4,015
Hungary	150	147	144	2	146	5,489	5,178
Indonesia	154	153	153	0	153	6,201	5,795
Iran, Islamic Rep. of	250	238	237	1	238	6,264	6,029
Israel	152	151	143	8	151	5,174	4,699
Italy	204	204	166	31	197	4,379	3,979
Japan	150	150	128	10	138	4,747	4,414
Jordan	232	230	230	0	230	8,439	7,694
Kazakhstan	150	147	146	1	147	4,551	4,390
Korea, Rep. of	150	150	150	0	150	5,315	5,166
Lebanon	150	150	136	11	147	4,231	3,974
Lithuania	150	142	132	9	141	5,285	4,747
Macedonia, Rep. of	150	150	150	0	150	4,360	4,062
Malaysia	180	180	180	0	180	6,209	5,733
Morocco	285	280	279	0	279	9,869	8,986
New Zealand	162	162	141	17	158	6,079	5,336
Norway	150	150	134	0	134	4,229	3,862
Oman	338	333	323	0	323	9,947	9,542
Palestinian Nat'l Authority	203	201	201	0	201	8,069	7,812
Qatar	113	110	109	0	109	4,641	4,422
Romania	150	147	145	2	147	5,704	5,523
Russian Federation	210	210	210	0	210	5,146	4,893
Saudi Arabia	154	153	150	3	153	4,477	4,344
Singapore	165	165	165	0	165	6,314	5,927
Slovenia	191	191	183	3	186	4,722	4,415
Sweden	159	156	152	1	153	6,210	5,573
Syrian Arab Republic	150	150	148	0	148	4,756	4,413
Thailand	172	172	160	12	172	6,404	6,124
Tunisia	217	211	207	0	207	5,464	5,128
Turkey	240	239	237	2	239	7,348	6,928
Ukraine	150	148	146	2	148	3,491	3,378
United Arab Emirates	477	460	458	0	458	14,716	14,089
United States	600	574	499	2	501	11,864	10,477

[^33]Table A-2. Total number of schools and students, by grade and education system: 2011—Continued

Benchmarking education systems	Grade 8						
	Schools in original sample	Eligible schools in original sample	Schools in original sample that participated	Substitute schools	Total schools that participated	Sampled students in participating schools	Students assessed
Alberta-CAN	150	147	133	12	145	5,579	4,799
Ontario-CAN	150	146	142	1	143	5,198	4,756
Quebec-CAN	200	198	189	0	189	6,879	6,149
Abu Dhabi-UAE	170	167	166	0	166	4,513	4,373
Dubai-UAE	143	131	130	0	130	5,915	5,571
Alabama-USA	63	60	55	0	55	2,414	2,113
California-USA	94	93	79	3	82	2,898	2,614
Colorado-USA	60	60	50	3	53	2,395	2,167
Connecticut-USA	63	62	62	0	62	2,356	2,099
Florida-USA	65	64	60	0	60	1,986	1,712
Indiana-USA	62	58	55	1	56	2,501	2,260
Massachusetts-USA	58	56	56	0	56	2,296	2,075
Minnesota-USA	60	56	51	4	55	2,720	2,500
North Carolina-USA	62	60	59	0	59	2,434	2,103

NOTE: Educations systems in the Southern hemisphere administered "TIMSS 2011" in the fall of 2010 while those in the Northern hemisphere administered the assessment in the spring of 2011. Italics indicate participants identified and counted in this report as an education system and not as a separate country SOURCE: International Association for the Evaluation of Educational Achievement (IEA), Trends in International Mathematics and Science Study (TIMSS), 2011.

The number of eligible students was further reduced on assessment day by 687 student absences, leaving 10,477 "assessed students" identified as having completed a TIMSS 2011 assessment booklet (see table A-2). The IEA defines the student response rate as the number of students assessed as a percentage of the number of eligible students which, in this case yields a weighted (and unweighted) student response rate of 94 percent (see table A-1).

Note that the 4,650 students excluded because whole classes were excluded do not figure in the calculation of student response rates. They do, however, figure in the calculation of the coverage of the International Target Population. Together, these 4,650 students excluded prior to classroom sampling, plus the 398 within-class exclusions resulted in an overall student exclusion rate of 7.2 percent (see table A-1 and Martin et al. 2012, exhibit C.3). The reported coverage of the International Target Population then is 100 percent (see Martin et al. 2012, exhibit C.3).

Combined participation rates. TIMSS' combined school, classroom, and student weighted response rate standard of 75 percent was met: the weighted and unweighted product of the separate U.S. response rates (81 percent) exceeded this 75 percent standard (see table A-1). However, the United States did include substitute schools because its school-level response rate was less than 85 percent, and, absent advance knowledge of the student-level response rate, introducing substitute schools was a prudent approach to take. Because 7 percent of the 8th-grade student population was excluded in the United States, the overall U.S. student inclusion rate was 93 percent. For this reason, the U.S. 8th-grade results in the TIMSS international report carry a coverage annotation indicating that coverage of the defined student population was less than the IEA standard of 95 percent. Table A-2 summarizes information on the coverage of the 8th-grade target populations in each participating education system.

Nonresponse bias in the U.S.TIMSS samples

NCES standards require a nonresponse bias analysis if the school-level response rate falls below 85 percent of the sampled schools (standard 2-2-2; NCES Education Statistics 2002), as it did for the 4th-grade sample. As a consequence, a nonresponse bias analysis was initiated and took a form similar to that adopted for TIMSS 2003 (Ferraro and Van de Kerckhove 2006). A full report of this study will be included in a technical report to be released with the U.S. national TIMSS dataset. The state samples were sufficient enough that none required a nonresponse bias analysis.

Three methods were chosen to perform this analysis. The first method focused exclusively on the sampled schools and ignored substitute schools. The schools were weighted by their school base weights, excluding any nonresponse adjustment factor. The second method focused on sampled schools plus substitute schools, treating as nonrespondents those schools from which a final response was not received.

Again, schools were weighted by their base weights, with the base weight for each substitute school set to the base weight of the original school that it replaced. The third method repeated the analyses from the second method using nonresponse adjusted weights. ${ }^{13}$

In order to compare TIMSS respondents and nonrespondents, it was necessary to match the sample of schools back to the sample frame to identify as many characteristics as possible that might provide information about the presence of nonresponse bias. ${ }^{14}$ The characteristics available for analysis in the sampling frame were taken from the CCD for public schools, and from the PSS for private schools. For categorical variables, the distribution of the characteristics for respondents was compared with the distribution for all schools. The hypothesis of independence between a given school characteristic and the response status (whether or not the school participated) was tested using a Rao-Scott modified chi-square statistic. For continuous variables, summary means were calculated and the difference between means was tested using a t test. Note that this procedure took account of the fact that the two samples in question were not independent samples, but in fact the responding sample was a subsample of the full sample. This effect was accounted for in calculating the standard error of the difference. Note also that in those cases where both samples were weighted using just the base weights, the test is exactly equivalent to testing that the mean of the respondents was equal to the mean of the nonrespondents.

In addition, multivariate logistic regression models were set up to identify whether any of the school characteristics were significant in predicting response status when the effects of all potential influences available for modeling were considered simultaneously.

Public and private schools were modeled together using the following variables: ${ }^{15}$ community type (city, suburban, town, and rural); control of school (public or private); Census region (Northeast, Southeast, Central, and West); poverty level (percentage of students in school eligible for free or reduced-

[^34]price lunch); ${ }^{16}$ number of students enrolled in 4th-grade; total number of students; and, percentage minority students. ${ }^{17}$

Results for the original sample of schools. In the analyses for the original sample of schools, all substituted schools were treated as nonresponding schools. The results of these analyses follow.

Fourth grade. In the investigation into nonresponse bias at the school level for TIMSS 4th-grade schools, comparisons between schools in the eligible sample and participating schools showed that there was no relationship between response status and the majority of school characteristics available for analysis. In separate variable-by-variable bivariate analyses, six variables were found to be statistically significantly related to participation in the bivariate analysis: school control, community type, 4th-grade enrollment, the percentage of Black, non-Hispanic students, the percentage of Hispanic students, and the percentage of American Indian or Alaska Native students. Although each of these findings indicates some potential for nonresponse bias, when all of these factors were considered simultaneously in a regression analysis, private schools, the South (as a region), total school enrollment, 4th-grade enrollment, and the percentage of American Indian or Alaska Native students and Hispanics were significant predictors of participation. The second model showed that private schools, total school enrollment, and 4thgrade enrollment were significant predictors of participation.

Results for the final sample of schools. In the analyses for the final sample of schools, all substitute schools were included with the original schools as responding schools, leaving nonresponding schools as those for which no assessment data were available. The results of these analyses follow and are somewhat more complicated than the analyses for the original sample of schools.

Fourth grade. The bivariate results for the final sample of 4thgrade schools indicated that five of the six variables remained

[^35]statistically significant in the bivariate analysis: school control, 4th-grade enrollment, the percentage of Black, non-Hispanic students, the percentage of Hispanic students, and the percentage of American Indian or Alaska Native students. When all of these factors were considered simultaneously in a regression analysis, private schools, total school enrollment, and the percentage of American Indian or Alaska Native students remained significant predictors of participation.

For the final sample of schools in 4th grade, with school nonresponse adjustments applied to the weights, only two variables were statistically significant in the bivariate analysis: region and the percentage of Black, non-Hispanic students. ${ }^{18}$ The multivariate regression analysis cannot be conducted after the school nonresponse adjustments are applied to the weights.

These results suggest that there is some potential for nonresponse bias in the U.S. 4th-grade original sample based on the characteristics studied. It also suggests that, while there is no evidence that the use of substitute schools reduced the potential for bias, it has not added to it substantially and the inclusion of the replacement schools increased sample available for analyses. The application of school nonresponse adjustments substantially reduced the potential for bias.

Test development

TIMSS is a cooperative effort involving representatives from every country participating in the study. For TIMSS 2011, the test development effort began with a review and revision of the frameworks that are used to guide the construction of the assessment (Mullis et al. 2009). The frameworks were updated to reflect changes in the curriculum and instruction of participating countries and education systems. Extensive input from experts in mathematics and science education, assessment, and curriculum, and representatives from national educational centers around the world contributed to the final shape of the frameworks. Maintaining the ability to measure change over time was an important factor in revising the frameworks.

As part of the TIMSS dissemination strategy, approximately one-half of the 2007 assessment items were released for public use. To replace assessment items that had been released, participants submitted items for review by subjectmatter specialists, and additional items were written by the IEA Science and Mathematics Review Committee in consultation with item-writing specialists in various countries

[^36]Table A-3. Number and percentage distribution of new and trend mathematics and science items in the TIMSS assessment, by grade and domain: 2011

Content domain	Grade 4					
	All items		New items		Trend items	
	Number	Percent	Number	Percent	Number	Percent
Mathematics	175	100	72	100	103	100
Number	88	50	36	50	52	50
Geometric shapes and measures	61	35	25	35	36	35
Data display	26	15	11	15	15	15
Science	172	100	72	100	100	100
Life science	75	44	33	46	42	42
Physical science	63	37	25	35	38	38
Earth science	34	20	14	19	20	20

Content domain	Grade 8					
	All items		New items		Trend items	
	Number	Percent	Number	Percent	Number	Percent
Mathematics	217	100	91	100	126	100
Number	61	28	31	34	20	16
Algebra	70	32	23	25	47	37
Geometry	43	20	18	20	25	20
Data and chance	43	20	19	21	24	19
Science	217	100	92	100	125	100
Biology	79	36	33	36	46	37
Chemistry	44	20	19	21	25	20
Physics	55	25	22	24	33	26
Earth science	39	18	18	20	21	17

NOTE: The percentages in this table represent the number of items and not the number of score points. Some constructedresponse items are worth more than one score point. For the percentages of score points, see table 2. Details may not sum to 100 percent due to rounding.
SOURCE: International Association for the Evaluation of Educational Achievement (IEA), Trends in International Mathematics and Science Study (TIMSS), 2011.
and education systems to ensure that the content, as explicated in the frameworks, was covered adequately. Items were reviewed by an international Science and Mathematics Item Review Committee and field-tested in most of the participating countries. Results from the field test were used to evaluate item difficulty, how well items discriminated between high- and low-performing students, the effectiveness of distracters in multiple-choice items, scoring suitability and reliability for constructed-response items, and evidence of bias toward or against individual countries or in favor of boys or girls. As a 4th-grade result of this review, 72 new 4th-grade mathematics and 72 new 4th-grade science items were selected for inclusion in the international assessment. In total, 175 mathematics and 172 science items were included in the 4th-grade TIMSS assessment booklets. At the 8th grade, the review of the item statistics from the field test led to the inclusion of 91 new 8th-grade mathematics and 92 new 8th-grade science items in the assessment. In total, 217 mathematics and 217 science items were included in the 8th-grade TIMSS assessment booklets. More detail on the distribution of new and trend items is included in table A-3.

Design of instruments

TIMSS 2011 included booklets containing assessment items as well as self-administered background questionnaires for principals, teachers, and students.

Assessment booklets

The assessment booklets were constructed such that not all of the students responded to all of the items. This is consistent with other large-scale assessments, such as NAEP. To keep the testing burden to a minimum, and to ensure broad subjectmatter coverage, TIMSS used a rotated block design that included both mathematics and science items. That is, students encountered both mathematics and science items during the assessment.

In 2011, the 4th-grade assessment consisted of 14 booklets, each requiring approximately 72 minutes. The assessment was given in two 36 -minute parts, with a 5 - to 10-minute break in between. The student questionnaire was given after the second part of the assessment. Although it was untimed, it was allotted approximately 30 minutes for response time.

The 14 booklets were rotated among students, with each participating student completing 1 booklet only. The mathematics and science items were each assembled separately into 14 blocks, or clusters, of items. Each of the 14 TIMSS 2011 booklets contained 4 blocks in total. Each block contained either mathematics items or science items only and each block occurred twice across the 14 books. For each subject, the secure, or trend, items used in prior assessments were included in 8 blocks, with the other 6 blocks containing new items.

Table A-4. Number of mathematics and science items in the TIMSS grade 4 and grade 8 assessments, by type and content domain: 2011

	Grade 4				Grade 8		
	Response type			Content domain	Total	Response type	
Content domain	Total	Multiple choice	Constructed response			Multiple choice	Constructed response
Total	347	186	161	Total	434	228	206
Mathematics	175	93	82	Mathematics	217	118	99
Number	88	42	46	Number	61	31	30
Geometric shapes and measures	61	38	23	Algebra	70	37	33
Data display	26	13	13	Geometry	43	25	18
				Data and chance	43	25	18
Science	172	93	79				
Life science	75	36	39	Science	217	110	107
Physical science	63	37	26	Biology	79	38	41
Earth science	34	20	14	Chemistry	44	22	22
				Physics	55	29	26
				Earth science	39	21	18

SOURCE: International Association for the Evaluation of Educational Achievement (IEA), Trends in International Mathematics and Science Study (TIMSS), 2011.

The 2011 8th-grade assessment followed the same pattern and consisted of 14 booklets, each requiring approximately 90 minutes of response time. The assessment was given in two 45-minute parts, with a 5- to 10-minute break in between. As in 4th grade, the student questionnaire was given after the second part of the assessment, and was allotted approximately 30 minutes of response time. The 14 booklets were rotated among students, with each participating student completing 1booklet only. The mathematics and science items were assembled into 14 blocks, or clusters, of items. Each block contained either mathematics items or science items only. For each subject, the secure, or trend, items used in prior assessments were included in 8 blocks, with the other 6 blocks containing new items. Each of the 14 TIMSS 2011 booklets contained 4 blocks in total. The TIMSS booklets administered in the state samples were exactly the same as those administered in the national sample.

As part of the design process, it was necessary to ensure that the booklets showed a distribution across the mathematics and science content domains as specified in the frameworks. The number of mathematics and science items in the 4th- and 8th-grade TIMSS 2011 assessments is shown in table A-4.

Background questionnaires

As in prior administrations, TIMSS 2011 included selfadministered questionnaires for principals, teachers, and students. To create the questionnaires for 2011, the 2007 versions were reviewed extensively by the national research coordinators from the participating countries and education systems as well as a Questionnaire Item Review Committee (QIRC). The QIRC comprises 10-12 experienced National Research Coordinators (NRCs) from different participating countries and education systems who have analyzed TIMSS data and use it in their own countries or education system. The QIRC review resulted in items being deleted or revised, and the addition of several new ones. Like the assessment items, all questionnaire items were field-tested and the results reviewed carefully. As a result, some of the questionnaire items needed to be revised prior to their inclusion in the final questionnaires. The questionnaires requested information to help provide a context for the performance scores, focusing on such topics as students' attitudes and beliefs about learning, their habits and homework, and their lives both in and outside of school; teachers' attitudes and beliefs about teaching and learning, teaching assignments, class size and organization, instructional practices, and participation in professional development activities; and principals' viewpoints on policy and budget responsibilities, curriculum and instruction issues and student behavior, as well as descriptions of the organization of schools and courses. For 2011, online versions of the school and teacher questionnaires were offered to respondents as the primary mode of data collection. Detailed results from the student, teacher, and school surveys are not discussed in this report
but are available in the two international reports: the TIMSS 2011 International Mathematics Report (Mullis et al. 2012) and TIMSS 2011 International Science Report (Martin et al. 2012).

Translation

Source versions of all instruments (assessment booklets, questionnaires, and manuals) were prepared in English and translated into the primary language or languages of instruction in each education system. In addition, it was sometimes necessary to adapt the instrument for cultural purposes, even in countries and education systems that use English as the primary language of instruction. All adaptations were reviewed and approved by the International Study Center to ensure they did not change the substance or intent of the question or answer choices. For example, proper names were sometimes changed to names that would be more familiar to students (e.g., Marja-leena to Maria).

Each participant prepared translations of the instruments according to translation guidelines established by the International Study Center. Adaptations to the instruments were documented by each participant and submitted for review. The goal of the translation guidelines was to produce translated instruments of the highest quality that would provide comparable data across participants.

Translated instruments were verified by an independent, professional translation agency prior to final approval and printing of the instruments. Participating education systems were required to submit copies of the final printed instruments to the International Study Center. Further details on the translation process can be found in the TIMSS and PIRLS Methods and Procedures (Martin and Mullis 2011).

Recruitment, test administration, and quality assurance

TIMSS 2011 emphasized the use of standardized procedures for all participants. Each participating country and education system collected its own data, based on comprehensive manuals and training materials provided by the international project team to explain the survey's implementation, including precise instructions for the work of school coordinators and scripts for test administrators to use in testing sessions.

Recruitment of schools and students

With the exception of private schools, the recruitment of schools required several steps. Beginning with the sampled schools, the first step entailed obtaining permission from the school district to approach the sampled school(s) in that district. If a district refused permission, then the district of the first substitute school was approached and the procedure was repeated. With permission from the district, the school(s) was contacted in a second step. If a sampled school refused to participate, the district of the first substitute was approached
and the permission procedure repeated. During most of the recruitment period sampled schools and substitute schools were being recruited concurrently. Each participating school was asked to nominate a school coordinator as the main point of contact for the study. The school coordinator worked with project staff to arrange logistics and liaise with staff, students and parents as necessary.

On the advice of the school, parental permission for students to participate was sought with one of three approaches to parents: a simple notification; a notification with a refusal form; and a notification with a consent form for parents to sign. In each approach, parents were informed that their students could opt out of participating.

Gifts to schools, school coordinators, and students

Schools, school coordinators, and students were provided with small gifts in appreciation for their willingness to participate. Schools were offered $\$ 200$, school coordinators received $\$ 100$, and students were given a clock-compass carabiner.

Test administration

Test administration in the United States was carried out by professional staff trained according to the international guidelines. School personnel were asked only to assist with listings of students, identifying space for testing in the school, and specifying any parental consent procedures needed for sampled students.

Calculator usage

Calculators were not permitted during the TIMSS 4th-grade assessment. However, the TIMSS policy on calculator use at the 8th grade was to give students the best opportunity to operate in settings that mirrored their classroom experiences. Calculators were permitted but not required for the 8th-grade assessment materials. In the United States, all students were allowed, but not required, to use a calculator.

Quality assurance

The International Study Center monitored compliance with the standardized procedures. National research coordinators were asked to nominate one or more persons unconnected with their national center, such as retired school teachers, to serve as quality control monitors for their country or education system. The International Study Center developed manuals for the monitors and briefed them in 2-day training sessions about TIMSS, the responsibilities of the national centers in conducting the study, and their own roles and responsibilities. Some 60 schools in the U.S. samples were visited by the monitors- 30 schools in the 4th-grade sample, and 30 schools in the 8th-grade sample. These schools included those in both the national and state samples and were scattered geographically across the nation.

Scoring and scoring reliability

The TIMSS assessment items included both multiple-choice and constructed-response items. A scoring rubric (guide) was created for every constructed response item included in the TIMSS assessments. The rubrics were carefully written and reviewed by national research coordinators and other experts as part of the field test of items, and revised accordingly.

The national research coordinator in each country or education system was responsible for the scoring and coding of data for that participant, following established guidelines. The national research coordinator and, sometimes, additional staff attended scoring training sessions held by the International Study Center. The training sessions focused on the scoring rubrics and coding system employed in TIMSS. Participants in these training sessions were provided extensive practice in scoring example items over several days. Information on within-country agreement among coders was collected and documented by the International Study Center. Information on scoring and coding reliability was also used to calculate cross-country agreement among coders. Information on scoring reliability for constructed-response scoring in TIMSS 2011 is provided in the international report.

Data entry and cleaning

The national research coordinator from each country or education system was responsible for data entry. In the United States, Westat was contracted to collect data for TIMSS 2011 and entered the data into data files using a common international format. This format was specified in the Data Entry Manager Manual (IEA Data Processing Center 2010), which accompanied the IEA-supplied data-entry software (WinDEM) given to all participating countries to create data files. This software facilitated the checking and correction of data by providing various data consistency checks. The data were then sent to the IEA Data Processing Center (DPC) in Hamburg, Germany, for cleaning. The DPC checked that the international data structure was followed; checked the identification system within and between files; corrected single case problems manually; and applied standard cleaning procedures to questionnaire files. Results of the data cleaning process were documented by the DPC. This documentation was then sent to the national research coordinator along with any remaining questions about the data. The national research coordinator then provided the DPC with revisions to coding or solutions for anomalies. The DPC subsequently compiled background univariate statistics and preliminary test scores based on classical item analysis and item response theory (IRT). Detailed information on the entire data entry and cleaning process can be found in the TIMSS and PIRLS Methods and Procedures (Martin and Mullis 2011).

Weighting, scaling, and plausible values

Before the data were analyzed, responses from the groups of students assessed were assigned sampling weights to ensure that their representation in the TIMSS 2011 results matched their actual percentage of the school population in the grade assessed. With these sampling weights in place, the analyses of TIMSS 2011 data proceeded in two phases: scaling and estimation. During the scaling phase, IRT procedures were used to estimate the measurement characteristics of each assessment question. During the estimation phase, the results of the scaling were used to produce estimates of student achievement. Subsequent analyses related these achievement results to the background variables collected by TIMSS 2011.

Weighting

Responses from the groups of students were assigned sampling weights to adjust for over- or under-representation during the sampling of a particular group. The use of sampling weights is necessary for the computation of sound, nationally representative estimates. The weight assigned to a student's responses is the inverse of the probability that the student is selected for the sample. When responses are weighted, none are discarded, and each contributes to the results for the total number of students represented by the individual student assessed. Weighting also adjusts for various situations (such as school and student nonresponse) because data cannot be assumed to be randomly missing. The internationally defined weighting specifications for TIMSS require that each assessed student's sampling weight should be the product of (1) the inverse of the school's probability of selection, (2) an adjustment for school-level nonresponse, (3) the inverse of the classroom's probability of selection, and (4) an adjustment for student-level nonresponse. ${ }^{19}$ All TIMSS 1995, 1999, 2003, 2007, and 2011 analyses are conducted using sampling weights. A detailed description of this process is provided in the TIMSS and PIRLS Methods and Procedures (Martin and Mullis 2011). For 2011, though the national and state samples share schools, the samples are not identical school samples and, thus, weights are estimated separately for the national and state samples.

Scaling

In TIMSS, the propensity of students to answer questions correctly was estimated with a two-parameter IRT model for dichotomous constructed response items, a three-parameter IRT model for multiple choice response items, and a generalized partial credit IRT model for polytomous constructed response items. The scale scores assigned to each student were estimated using a procedure described

below in the "Plausible values" section, with input from the IRT results. With IRT, the difficulty of each item, or item category, is deduced using information about how likely it is for students to get some items correct (or to get a higher rating on a constructed response item) versus other items. Once the parameters of each item are determined, the ability of each student can be estimated even when different students have been administered different items. At this point in the estimation process achievement scores are expressed in a standardized logit scale that ranges from -4 to +4 . In order to make the scores more meaningful and to facilitate their interpretation, the scores for the first year (1995) are transformed to a scale with a mean of 500 and a standard deviation of 100 . Subsequent waves of assessment are linked to this metric (see below).

To make scores from the second (1999) wave of data comparable to the first (1995) wave, two steps had to be taken. First, the 1995 and 1999 data for countries and education systems that participated in both years were scaled together to estimate item parameters. Ability estimates for all students (those assessed in 1995 and those assessed in 1999) based on the new item parameters were then estimated. To put these jointly calibrated 1995 and 1999 scores on the 1995 metric, a linear transformation was applied such that the jointly calibrated 1995 scores have the same mean and standard deviation as the original 1995 scores. Such a transformation also preserves any differences in average scores between the 1995 and 1999 waves of assessment.

In order for scores resulting from subsequent waves of assessment (2003, 2007 and 2011) to be made comparable to 1995 scores (and to each other), the two steps above are applied sequentially for each pair of adjacent waves of data: two adjacent years of data are jointly scaled, then resulting ability estimates are linearly transformed so that the mean and standard deviation of the prior year is preserved. As a result, the transformed-2011 scores are comparable to all previous waves of the assessment and longitudinal comparisons between all waves of data are meaningful.

To facilitate the joint calibration of scores from adjacent years of assessment, common test items are included in successive administrations. This also enables the comparison of item parameters (difficulty and discrimination) across administrations. If item parameters change dramatically across administrations, they are dropped from the current assessment so that scales can be more accurately linked across years. In this way even if the average ability levels of students in countries and education systems participating in TIMSS changes over time, the scales still can be linked across administrations.

Plausible values

To keep student burden to a minimum, TIMSS administered a limited number of assessment items to each student-too few to produce accurate content-related scale scores for each student. To accommodate this situation, during the scaling process plausible values were estimated to characterize students participating in the assessment, given their background characteristics. Plausible values are imputed values and not test scores for individuals in the usual sense. In fact, they are biased estimates of the proficiencies of individual students. Plausible values do, however, provide unbiased estimates of population characteristics (e.g., means and variances of demographic subgroups).

Plausible values represent what the performance of an individual on the entire assessment might have been, had it been observed. They are estimated as random draws (usually five) from an empirically derived distribution of score values based on the student's observed responses to assessment items and on background variables. Each random draw from the distribution is considered a representative value from the distribution of potential scale scores for all students in the sample who have similar characteristics and identical patterns of item responses. Differences between plausible values drawn for a single individual quantify the degree of error (the width of the spread) in the underlying distribution of possible scale scores that could have caused the observed performances.

An accessible treatment of the derivation and use of plausible values can be found in Beaton and González (1995). A more technical treatment can be found in the TIMSS and PIRLS Methods and Procedures (Martin and Mullis 2011).

International benchmarks

International benchmarks for achievement were developed in an attempt to provide a concrete interpretation of what the scores on the TIMSS mathematics and science achievement scales mean (for example, what it means to have a scale score of 513 or 426). To describe student performance at various points along the TIMSS mathematics and science achievement scales, TIMSS uses scale anchoring to summarize and describe student achievement at four points on the mathematics and science scales-Advanced (625), High (550), Intermediate (475), and Low (400) international benchmarks. Scale anchoring involves selecting benchmarks (scale points) on the TIMSS achievement scales to be described in terms of student performance. Once benchmark scores have been chosen, items are identified that students are likely to score highly on. The content of these items describes what students at each benchmark level of achievement know and can do. To interpret the content of anchored items, these items are grouped by content area within benchmarks and reviewed by mathematics and science experts. These experts focus on the content of each item
and describe the kind of mathematics or science knowledge demonstrated by students answering the item correctly. The experts then provide a summary description of performance at each anchor point leading to a contentreferenced interpretation of the achievement results. Detailed information on the creation of the benchmarks is provided in the international TIMSS reports (Mullis et al. 2012; Martin et al. 2012).

Data limitations

As with any study, there are limitations to TIMSS 2011 that researchers should take into consideration. Estimates produced using data from TIMSS 2011 are subject to two types of error-nonsampling and sampling errors. Nonsampling errors can be due to errors made in collecting and processing data. Sampling errors can occur because the data were collected from a sample rather than a complete census of the population.

Nonsampling errors

Nonsampling error is a term used to describe variations in the estimates that may be caused by population coverage limitations, nonresponse bias, and measurement error, as well as data collection, processing, and reporting procedures. The sources of nonsampling errors are typically problems like unit and item nonresponse, differences in respondents' interpretations of the meaning of the survey questions, response differences related to the particular time the survey was conducted, and mistakes in data preparation.

Missing data. Five kinds of missing data were identified by separate missing data codes: omitted, uninterpretable, not administered, not applicable, and not reached. An item was considered omitted if the respondent was expected to answer the item but no response was given (e.g., no box was checked in the item which asked "Are you a girl or a boy?"). Items with invalid responses (e.g., multiple responses to a question calling for a single response) were coded as uninterpretable. The not administered code was used to identify items not administered to the student, teacher, or principal (e.g., those items excluded from the student's test booklet because of the BIB-spiraling of the items). An item was coded as not applicable when it is not logical that the respondent answer the question (e.g., when the opportunity to make the response is dependent on a filter question). Finally, items that are not reached were identified by a string of consecutive items without responses continuing through to the end of the assessment or questionnaire.

Missing background data on other than key variables are not included in the analyses for this report and are not imputed. ${ }^{20}$ Item response rates for variables discussed in this report exceeded the NCES standard of 85 percent and so can be reported without notation. Of the three key variables identified in the TIMSS 2011 data for the United States-sex, race/ ethnicity and the percentage of students eligible for free or reduced-price lunch (FRPL)—as table A-5 indicates, sex has no missing responses and race/ethnicity has minimal missing responses at some 2 percent. The FRPL variable has some 5 percent missing responses at 4th grade and 3 percent missing responses at 8th grade among the public schools in the sample and these were imputed by substituting values taken from the CCD for the schools in question. Note, however, that the CCD provides this information only for public schools. The comparable database for private schools (PSS) does not include data on participation in the FRPL program.

Sampling errors

Sampling errors arise when a sample of the population, rather than the whole population, is used to estimate some statistic. Different samples from the same population would likely produce somewhat different estimates of the statistic in question. This fact means that there is a degree of uncertainty associated with statistics estimated from a sample. This uncertainty is referred to as sampling variance and is usually expressed as the standard error of a statistic estimated from sample data. The approach used for calculating standard errors in TIMSS was jackknife repeated replication (JRR). Standard errors can be used as a measure for the precision expected from a particular sample. Standard errors for all of the reported estimates are included in appendix E.

Confidence intervals provide a way to make inferences about population statistics in a manner that reflects the sampling error associated with the statistic. Assuming a normal distribution, the population value of this statistic can be inferred to lie within the confidence interval in 95 out of 100 replications of the measurement on different samples drawn from the same population.

For example, the average mathematics score for the U.S. 8th-grade students was 509 in 2011, and this statistic had a standard error of 2.6. Therefore, it can be stated with 95 percent confidence that the actual average of U.S. 8th-grade students in 2011 was between 504 and $514(1.96 \times 2.6=5.1$; confidence interval = $509+/-5.1$).

[^37]
Description of background variables

The international versions of the TIMSS 2011 student, teacher, and school questionnaires are available at http://timss.bc.edu. The U.S. versions of these questionnaires are available at http://nces.ed.gov/timss.

Table A-5. Weighted response rates for unimputed variables for TIMSS, by grade: 2011

Variable	Source of information	Grade 4		Grade 8	
		U.S. response rate	Range of response rates in other countries	U.S. response rate	Range of response rates in other countries
Sex	Classroom tracking form	100	99.5-100	100	99.5-100
Race/ethnicity	Student questionnaire	98	\dagger	99	\dagger
Free or reduced-price lunch	School questionnaire	95	\dagger	97	\dagger

\dagger Not applicable (U.S.-only variables).
SOURCE: International Association for the Evaluation of Educational Achievement (IEA), Trends in International Mathematics and Science Study (TIMSS), 2011.

Race/ethnicity

Students' race/ethnicity was obtained through student responses to a two-part question. Students were asked first whether they were Hispanic or Latino, and then whether they were members of the following racial groups: American Indian or Alaska Native; Asian; Black or African American; Native Hawaiian or other Pacific Islander; or White. Multiple responses to the race classification question were allowed. Students who responded that they are Hispanic or Latino were categorized as Hispanic, regardless of their reported races. Results are shown separately for Blacks, Hispanics, Whites, Asians, and Multiracial as distinct groups. The small numbers of students indicating that they were American Indian or Alaska Native or Native Hawaiian or other Pacific Islander are included in the total but not reported separately.

Poverty level in public schools (percentage of students eligible for free or reduced-price lunch)

The poverty level in public schools was obtained from principals' responses to the school questionnaire. The question asked the principal to report, as of approximately the first of October 2010, the percentage of students at the school eligible to receive free or reduced-price lunch through the National School Lunch Program. The answers were grouped into five categories: less than 10 percent; 10 to 24.9 percent; 25 to 49.9 percent; 50 to 74.9 percent; and 75 percent or more. Analysis was limited to public schools only. Missing data on this variable were replaced with measures taken from the CCD. The effect of this replacement on the confidentiality of the data was examined as part of the confidentiality analyses described in the following section.

Confidentiality and disclosure limitations

In accord with NCES standard 4-2-6 (NCES Education Statistics 2002), confidentiality analyses for the United States were implemented to provide reasonable assurance that public-use data files issued by the IEA and NCES would not allow identification of individual U.S. schools or students when compared against publicly available data collections.

Disclosure limitations included the identification and masking of potential disclosure risks for TIMSS schools and adding an additional measure of uncertainty of school, teacher, and student identification through random swapping of a small number of data elements within the student, teacher, and school files. ${ }^{21}$ These procedures were applied to the national and state samples.

Statistical procedures

Tests of significance

Comparisons made in the text of this report were tested for statistical significance. For example, in the commonly made comparison of education systems averages against the average of the United States, tests of statistical significance were used to establish whether or not the observed differences from the U.S. average were statistically significant. The estimation of the standard errors that is required in order to undertake the tests of significance is complicated by the complex sample and assessment designs, both of which generate error variance. Together they mandate a set of statistically complex procedures in order to estimate the correct standard errors. As a consequence, the estimated standard errors contain a sampling variance component estimated by the jackknife repeated replication (JRR) procedure; and, where the assessments are concerned, an additional imputation variance component arising from the assessment design. Details on the procedures used can be found in the WesVar 5.0 User's Guide (Westat 2007).

[^38]In almost all instances, the tests for significance used were standard t tests. ${ }^{22}$ These fell into two categories according to the nature of the comparison being made: comparisons of independent samples and comparisons of nonindependent samples. Before describing the t tests used, some background on the two types of comparisons is provided below.

The variance of a difference is equal to the sum of the variances of the two initial variables minus two times the covariance between the two initial variables. A sampling distribution has the same characteristics as any distribution, except that units consist of sample estimates and not observations. Therefore,

$$
\sigma_{\left(\hat{\mu}_{X}-\hat{\beta}_{Y}\right)}^{2}=\sigma_{\left(\hat{\mu}_{X}\right)}^{2}+\sigma_{\left(\hat{\mu}_{Y}\right)}^{2}-2 \operatorname{cov}\left(\hat{\mu}_{X,} \hat{\mu}_{Y}\right)
$$

The sampling variance of a difference is equal to the sum of the two initial sampling variances minus two times the covariance between the two sampling distributions on the estimates.

If one wants to determine whether girls' performance differs from boys' performance, for example, then, as for all statistical analyses, a null hypothesis has to be tested. In this particular example, it consists of computing the difference between the boys' performance mean and the girls' performance mean (or the inverse). The null hypothesis is

$$
H_{0}: \hat{\mu}_{(\text {boys })}-\hat{\mu}_{(\text {girls })}=0
$$

To test this null hypothesis, the standard error on this difference is computed and then compared to the observed difference. The respective standard errors on the mean estimate for boys and girls can be easily computed.

The expected value of the covariance will be equal to 0 if the two sampled groups are independent. If the two groups are not independent, as is the case with girls and boys attending the same schools within an education system, or comparing an education system's mean with the international mean that includes that particular country, the expected value of the covariance might differ from 0 .

In TIMSS, participating education systems' samples are independent. Therefore, for any comparison between two education systems, the expected value of the covariance will be equal to 0 , and thus the standard error on the estimate is

$$
\sigma_{\left(\hat{\theta}_{i}-\hat{\theta}_{j}\right)}=\sqrt{\sigma_{\left(\hat{\theta}_{i}\right)}^{2}+\sigma_{\left(\hat{\theta}_{j}\right)}^{2}}
$$

with θ being a tested statistic.

Within a particular education system, any subsamples will be considered as independent only if the categorical variable used to define the subsamples was used as an explicit stratification variable.

Therefore, as for any computation of a standard error in TIMSS, replication methods using the supplied replicate weights are used to estimate the standard error on a difference. Use of the replicate weights implicitly incorporates the covariance between the two estimates into the estimate of the standard error on the difference.

Thus, in simple comparisons of independent averages, such as the U.S. average with other education systems' averages, the following formula was used to compute the t statistic:

$$
t=\frac{\left(e s t_{1}-e s t_{2}\right)}{\sqrt{\left(s e_{1}\right)^{2}+\left(s e_{2}\right)^{2}}}
$$

$E s t_{1}$ and $e s t_{2}$ are the estimates being compared (e.g., average of education system A and the U.S. average), and $s e_{1}$ and $s e_{2}$ are the corresponding standard errors of these averages.

The second type of comparison used in this report occurred when comparing differences of nonsubset, nonindependent groups (e.g., when comparing the average scores of boys versus girls within the United States). In such comparisons, the following formula was used to compute the t statistic:

$$
t=\frac{\left(e s t_{g r p 1}-e s t_{g r p 2}\right)}{s e\left(e s t_{g r p 1}-e s t_{g r p 2}\right)}
$$

$E s t_{\text {grp1 }}$ and estgrp2 are the nonindependent group estimates being compared. $\mathrm{Se}\left(\right.$ est $_{\text {grp1 }}$ - est $\left.t_{\text {grp2 } 2}\right)$ is the standard error of the difference calculated using a JRR procedure, which accounts for any covariance between the estimates for the two nonindependent groups.

Appendix B: Example Items

After each administration of TIMSS, the IEA releases to the public somewhat less than half of the TIMSS items in order to illustrate the content of the assessment. The remaining items are kept secure so they can be used again in a future administration of TIMSS to measure trends in performance. This appendix contains sample mathematics and science items used in the U.S. administration of TIMSS 2011. These items have been selected from the set of released items to provide examples from each of the international benchmark levels, each of the content and cognitive domains, and each of the response types.

Exhibits B. 1 and B. 2 below provide a key to which items are examples of each of these dimensions, B. 1 for mathematics and B. 2 for science. Reading exhibit B.1, for example, one can see that two items illustrate the Number content domain at grade 4 (exhibits B. 5 and B.6) but that each of these represents a different benchmark level, a different cognitive domain, and a different item response type. Each item is presented on a separate page in this appendix. For all multiple choice items, the test question and "response options" (possible answers) are reproduced on the page along with the "item key" (correct answer). For all constructedresponse items, the "scoring rubric" (the criteria for scoring) is reproduced along with the test question. All item pages also include the percentage of students who received full credit for their answer in each participating country or other education system. Note that although most constructed response items were worth 1 point, some were worth 2 points with 1 point awarded for partial credit. In this appendix, if an example item was worth 2 points, only the percentages of students with responses awarded 2 points (full credit) are shown.

Exhibit B-1. Sample TIMSS 2011 mathematics items, by grade level, international benchmark level, content domain, cognitive domain, and item response type

Exhibit number, by grade	International benchmark level	Content domain	Cognitive domain	Item response type
Grade 4				
B. 3	Low	Data Display	Applying	CR
B. 4	Intermediate	Geometric Shapes and Measures	Knowing	MC
B. 5	High	Number	Reasoning	MC
B. 6	Advanced	Number	Applying	CR
Grade 8				
B. 7	Low	Number	Knowing	CR
B. 8	Intermediate	Algebra	Knowing	CR
B. 9	High	Data and Chance	Reasoning	MC
B. 10	Advanced	Geometry	Applying	MC

NOTE: CR indicates constructed-response item. MC indicates multiple choice item.

Exhibit B-2. Sample TIMSS 2011 science items, by grade level, international benchmark level, content domain, cognitive domain, and item response type

Exhibit number, by grade	International benchmark level	Content domain	Cognitive domain	Item response type
Grade 4		Life Science	Applying	MC
B.11	Low	Intermediate	Physical Science	Knowing
B.12 MC				
B.13	High	Life Science	Reasoning	CR
B.14	Advanced	Earth Science	Applying	CR
Grade 8				
B.15	Low	Chemistry	Applying	MC
B.16	Intermediate	Biology	Knowing	MC
B.17	High	Earth Science	Knowing	CR
B.18	Advanced	Physics	Reasoning	CR

NOTE: CR indicates constructed-response item. MC indicates multiple choice item.

Exhibit B-3. Example 4th-grade mathematics item: 2011

International Benchmark Level	Low
Content Domain	Data Display
Cognitive Domain	Applying

Favorite colors of Darin's friends

Darin asked his friends to name their favorite color. He collected the information in the table shown below.

Favorite Color	Number of Friends
Red	4
Green	2
Blue	6
Yellow	7

Then Darin started to draw a graph to show the information. Complete Darin's graph.

[^39]| Education system | Percent full credit |
| :---: | :---: |
| International average | 73 |
| Korea, Rep. of | 97 |
| Singapore ${ }^{1}$ | 95 |
| Hong Kong-CHN ${ }^{1}$ | 95 |
| Japan | 93 |
| Northern Ireland-GBR ${ }^{2}$ | 92 |
| Netherlands ${ }^{2}$ | 91 |
| England-GBR | 89 |
| Finland | 88 |
| Germany | 88 |
| Lithuania ${ }^{1,3}$ | 87 |
| Ireland | 87 |
| Chinese Taipei-CHN | 87 |
| Belgium (Flemish)-BEL | 86 |
| Australia | 84 |
| Portugal | 84 |
| Denmark ${ }^{1}$ | 84 |
| Sweden | 83 |
| Malta | 83 |
| Hungary | 83 |
| Russian Federation | 81 |
| New Zealand | 81 |
| Austria | 80 |
| Slovenia | 80 |
| Thailand | 78 |
| United States ${ }^{1}$ | 78 |
| Spain | 78 |
| Slovak Republic | 77 |
| Czech Republic | 77 |
| Italy | 77 |
| Bahrain | 75 |
| Croatia ${ }^{1}$ | 74 |
| Norway ${ }^{4}$ | 74 |
| Turkey | 73 |
| Kazakhstan ${ }^{1}$ | 73 |
| Poland | 73 |
| Qatar ${ }^{1}$ | 70 |
| Chile | 69 |
| United Arab Emirates | 68 |
| Serbia ${ }^{1}$ | 67 |
| Romania | 62 |
| Saudi Arabia | 60 |
| Oman ${ }^{5}$ | 57 |
| Georgia ${ }^{3,6}$ | 56 |
| Kuwait ${ }^{3,7}$ | 55 |
| Iran, Islamic Rep. of | 54 |
| Azerbaijan ${ }^{1,6}$ | 47 |
| Armenia | 41 |
| Tunisia ${ }^{5}$ | 24 |
| Morocco ${ }^{7}$ | 23 |
| Yemen ${ }^{7}$ | 13 |
| Benchmarking education systems | Percent full credit |
| Quebec-CAN | 89 |
| Ontario-CAN | 87 |
| North Carolina-USA ${ }^{1,3}$ | 82 |
| Alberta-CAN ${ }^{1}$ | 81 |
| Florida-USA ${ }^{3,8}$ | 80 |
| Dubai-UAE | 75 |
| Abu Dhabi-UAE | 62 |

Exhibit B-4. Example 4th-grade mathematics item: 2011

International Benchmark Level	Intermediate
Content Domain	Geometric Shapes and Measures
Cognitive Domain	Knowing

Which dotted line is a line of symmetry?

In which of the following figures is the dotted line a line of symmetry?
A.

B.

C.

[^40]| Education system | Percent full credit |
| :---: | :---: |
| International average | 54 |
| Singapore ${ }^{1}$ | 91 |
| Hong Kong-CHN ${ }^{1}$ | 81 |
| United States ${ }^{1}$ | 80 |
| Australia | 76 |
| Korea, Rep. of | 75 |
| Northern Ireland-GBR ${ }^{2}$ | 74 |
| England-GBR | 71 |
| Malta | 70 |
| Ireland | 66 |
| Turkey | 65 |
| Denmark ${ }^{1}$ | 65 |
| Saudi Arabia | 65 |
| Germany | 64 |
| Iran, Islamic Rep. of | 64 |
| Portugal | 63 |
| Italy | 63 |
| Czech Republic | 63 |
| Hungary | 61 |
| Lithuania ${ }^{1,3}$ | 61 |
| Kazakhstan ${ }^{1}$ | 59 |
| Russian Federation | 58 |
| Kuwait ${ }^{3,4}$ | 58 |
| Bahrain | 57 |
| Oman ${ }^{5}$ | 54 |
| United Arab Emirates | 54 |
| Chile | 53 |
| New Zealand | 53 |
| Thailand | 53 |
| Norway ${ }^{6}$ | 52 |
| Azerbaijan ${ }^{1,7}$ | 52 |
| Romania | 50 |
| Qatar ${ }^{1}$ | 50 |
| Slovenia | 49 |
| Austria | 49 |
| Belgium (Flemish)-BEL | 49 |
| Finland | 49 |
| Spain | 48 |
| Georgia ${ }^{3,7}$ | 44 |
| Serbia ${ }^{1}$ | 43 |
| Chinese Taipei-CHN | 43 |
| Poland | 40 |
| Slovak Republic | 40 |
| Armenia | 39 |
| Morocco ${ }^{4}$ | 37 |
| Sweden | 32 |
| Netherlands ${ }^{2}$ | 30 |
| Croatia ${ }^{1}$ | 30 |
| Japan | 30 |
| Yemen ${ }^{4}$ | 27 |
| Tunisia ${ }^{5}$ | 22 |
| Benchmarking education systems | $\begin{aligned} & \text { Percent } \\ & \text { full credit } \end{aligned}$ |
| Florida-USA ${ }^{3,8}$ | 87 |
| North Carolina-USA ${ }^{1,3}$ | 86 |
| Ontario-CAN | 76 |
| Alberta-CAN ${ }^{1}$ | 62 |
| Quebec-CAN | 62 |
| Abu Dhabi-UAE | 54 |
| Dubai-UAE | 52 |

www.manaraa.cotir3

Exhibit B-5. Example 4th-grade mathematics item: 2011

International Benchmark Level	High
Content Domain	Number
Cognitive Domain	Reasoning

Distance between towns using map

The scale on a map indicates that 1 centimeter on the map represents 4 kilometers on the land. The distance between the two towns on the map is 8 centimeters. How many kilometers apart are the two towns?
A. 2
B. 8
C. 16
® (.) 32

[^41]| Education system | Percent full credit |
| :---: | :---: |
| International average | 54 |
| Korea, Rep. of | 84 |
| Chinese Taipei-CHN | 84 |
| Russian Federation | 80 |
| Lithuania ${ }^{1,2}$ | 75 |
| Japan | 74 |
| Finland | 71 |
| Serbia ${ }^{2}$ | 71 |
| Singapore ${ }^{2}$ | 69 |
| Netherlands ${ }^{3}$ | 69 |
| Kazakhstan ${ }^{2}$ | 69 |
| Czech Republic | 67 |
| Azerbaijan ${ }^{2,4}$ | 66 |
| Croatia ${ }^{2}$ | 64 |
| Denmark ${ }^{2}$ | 63 |
| Slovenia | 63 |
| Northern Ireland-GBR ${ }^{3}$ | 62 |
| Slovak Republic | 61 |
| Germany | 60 |
| Hungary | 59 |
| United States ${ }^{2}$ | 59 |
| Portugal | 57 |
| Romania | 57 |
| Sweden | 57 |
| Austria | 57 |
| Poland | 57 |
| Norway ${ }^{5}$ | 56 |
| Iran, Islamic Rep. of | 55 |
| England-GBR | 54 |
| Italy | 54 |
| Belgium (Flemish)-BEL | 53 |
| Ireland | 50 |
| Turkey | 48 |
| Georgia ${ }^{1,4}$ | 47 |
| Australia | 46 |
| Spain | 46 |
| Armenia | 45 |
| New Zealand | 42 |
| Bahrain | 40 |
| Chile | 39 |
| Thailand | 39 |
| Saudi Arabia | 39 |
| United Arab Emirates | 37 |
| Qatar ${ }^{2}$ | 32 |
| Malta | 32 |
| Morocco ${ }^{6}$ | 31 |
| Oman ${ }^{7}$ | 31 |
| Tunisia ${ }^{7}$ | 31 |
| Yemen ${ }^{6}$ | 29 |
| Kuwait1,6 | 23 |
| Hong Kong-CHN ${ }^{2}$ | - |
| Benchmarking education systems | Percent full credit |
| North Carolina-USA ${ }^{1,2}$ | 62 |
| Florida-USA ${ }^{1,8}$ | 62 |
| Quebec-CAN | 57 |
| Ontario-CAN | 50 |
| Alberta-CAN ${ }^{2}$ | 43 |
| Dubai-UAE | 42 |
| Abu Dhabi-UAE | 33 |

Exhibit B-6. Example 4th-grade mathematics item: 2011

International Benchmark Level	Advanced
Content Domain	Number
Cognitive Domain	Applying

Recipe for 3 people

Ingredients	
Eggs	4
Flour	8 cups
Milk	$\frac{1}{2}$ cup

The above ingredients are used to make a recipe for 6 people. Sam wants to make this recipe for only 3 people.
Complete the table below to show what Sam needs to make the recipe for 3 people. The number of eggs he needs is shown.

[^42]| Education system | Percent full credit |
| :---: | :---: |
| International Avg. | 23 |
| Northern Ireland-GBR ${ }^{1}$ | 63 |
| England-GBR | 55 |
| Ireland | 54 |
| Singapore ${ }^{2}$ | 50 |
| Germany | 46 |
| Netherlands ${ }^{1}$ | 41 |
| New Zealand | 39 |
| Belgium (Flemish)-BEL | 38 |
| Denmark ${ }^{2}$ | 37 |
| Australia | 37 |
| Hong Kong-CHN ${ }^{2}$ | 34 |
| United States ${ }^{2}$ | 33 |
| Malta | 31 |
| Finland | 31 |
| Chinese Taipei-CHN | 31 |
| Portugal | 28 |
| Korea, Rep. of | 28 |
| Serbia ${ }^{2}$ | 27 |
| Lithuania ${ }^{\text {2,3 }}$ | 24 |
| Japan | 23 |
| Austria | 23 |
| Kazakhstan ${ }^{2}$ | 22 |
| Spain | 22 |
| Romania | 22 |
| Qatar ${ }^{2}$ | 21 |
| Bahrain | 20 |
| Azerbaijan ${ }^{2,4}$ | 20 |
| Russian Federation | 20 |
| United Arab Emirates | 20 |
| Hungary | 18 |
| Saudi Arabia | 18 |
| Slovenia | 17 |
| Poland | 16 |
| Norway ${ }^{5}$ | 15 |
| Sweden | 15 |
| Armenia | 15 |
| Chile | 15 |
| Italy | 14 |
| Georgia ${ }^{3,4}$ | 13 |
| Oman ${ }^{6}$ | 11 |
| Czech Republic | 10 |
| Slovak Republic | 10 |
| Kuwait ${ }^{3,7}$ | 8 |
| Turkey | 8 |
| Thailand | 5 |
| Tunisia ${ }^{6}$ | 5 |
| Morocco ${ }^{7}$ | 4 |
| Croatia ${ }^{2}$ | 3 |
| Yemen ${ }^{7}$ | 3 |
| Iran, Islamic Rep. of | 3 |
| Benchmarking education systems | Percent full credit |
| North Carolina-USA ${ }^{2,3}$ | 32 |
| Florida-USA ${ }^{3,8}$ | 31 |
| Dubai-UAE | 29 |
| Quebec-CAN | 22 |
| Alberta-CAN ${ }^{2}$ | 22 |
| Ontario-CAN | 22 |
| Abu Dhabi-UAE | 15 |

www.manaraa.colis 5

Exhibit B-7. Example 8th-grade mathematics item: 2011

International Benchmark Level	Low
Content Domain	Number
Cognitive Domain	Knowing

Add 42.65 to 5.748
$42.65+5.748=$

Answer: 48.398

[^43]| Education system | Percent full credit |
| :---: | :---: |
| International Avg. | 72 |
| Singapore ${ }^{1}$ | 94 |
| Malaysia | 91 |
| Hong Kong-CHN | 91 |
| Kazakhstan | 90 |
| Lithuania ${ }^{1}$ | 90 |
| Russian Federation ${ }^{1}$ | 90 |
| Chinese Taipei-CHN | 89 |
| United States ${ }^{1}$ | 89 |
| Hungary | 88 |
| Italy | 88 |
| Korea, Rep. of | 87 |
| Slovenia | 85 |
| Armenia | 84 |
| Tunisia | 82 |
| Israel ${ }^{2}$ | 82 |
| Australia | 82 |
| Norway | 81 |
| Lebanon | 81 |
| Japan | 81 |
| Ukraine | 80 |
| United Arab Emirates | 79 |
| Sweden | 79 |
| England-GBR ${ }^{3}$ | 79 |
| Finland | 79 |
| Morocco ${ }^{4}$ | 72 |
| Qatar ${ }^{5}$ | 72 |
| New Zealand | 70 |
| Romania | 69 |
| Saudi Arabia ${ }^{5}$ | 65 |
| Macedonia, Rep. of ${ }^{5}$ | 65 |
| Georgia ${ }^{6,7}$ | 64 |
| Thailand | 64 |
| Chile | 58 |
| Indonesia ${ }^{5}$ | 57 |
| Palestinian Nat'l Auth. ${ }^{5}$ | 56 |
| Oman ${ }^{5}$ | 49 |
| Turkey | 48 |
| Bahrain ${ }^{5}$ | 43 |
| Iran, Islamic Rep. of ${ }^{5}$ | 42 |
| Jordan ${ }^{5}$ | 36 |
| Ghana ${ }^{4}$ | 36 |
| Syrian Arab Republic ${ }^{5}$ | 31 |

Benchmarking education systems	Percent full credit
Massachusetts-USA 1,6	95
Minnesota-USA 6	93
Florida-USA 1,6	93
Alabama-USA	92
Connecticut-USA	
Indiana-USA	91
North Carolina-USA	2,6

Exhibit B-8. Example 8th-grade mathematics item: 2011

International Benchmark Level	Intermediate
Content Domain	Algebra
Cognitive Domain	Knowing

Next term in the pattern

$$
\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \frac{5}{6}
$$

A. What is the next term in this pattern?

Answer:

[^44]| Education system | Percent full credit |
| :---: | :---: |
| International Avg. | 70 |
| Japan | 94 |
| Singapore ${ }^{1}$ | 94 |
| Korea, Rep. of | 92 |
| Hong Kong-CHN | 92 |
| Chinese Taipei-CHN | 92 |
| Finland | 91 |
| Australia | 91 |
| Slovenia | 90 |
| Hungary | 90 |
| New Zealand | 89 |
| England-GBR ${ }^{2}$ | 89 |
| Sweden | 88 |
| Norway | 88 |
| United States ${ }^{1}$ | 87 |
| Lithuania ${ }^{3}$ | 86 |
| Israel ${ }^{4}$ | 85 |
| Italy | 85 |
| Ukraine | 85 |
| Russian Federation ${ }^{1}$ | 82 |
| Romania | 81 |
| Kazakhstan | 78 |
| Turkey | 77 |
| Tunisia | 76 |
| United Arab Emirates | 70 |
| Iran, Islamic Rep. of ${ }^{5}$ | 68 |
| Thailand | 68 |
| Armenia | 66 |
| Macedonia, Rep. of ${ }^{5}$ | 66 |
| Bahrain ${ }^{5}$ | 62 |
| Qatar ${ }^{5}$ | 56 |
| Georgia ${ }^{3,6}$ | 53 |
| Malaysia | 53 |
| Jordan ${ }^{5}$ | 45 |
| Syrian Arab Republic ${ }^{5}$ | 44 |
| Lebanon | 43 |
| Ghana ${ }^{7}$ | 38 |
| Oman ${ }^{5}$ | 37 |
| Palestinian Nat'I Auth. ${ }^{5}$ | 36 |
| Saudi Arabia ${ }^{5}$ | 33 |
| Indonesia ${ }^{5}$ | 32 |
| Chile | 32 |
| Morocco ${ }^{7}$ | 15 |

Benchmarking education systems	Percent full credit
Massachusetts-USA ${ }^{1,3}$	94
Quebec-CAN	92
Ontario-CAN ${ }^{1}$	92
Indiana-USA ${ }^{1,3}$	91
Alberta-CAN ${ }^{1}$	90
Colorado-USA ${ }^{3}$	90
Minnesota-USA ${ }^{3}$	90
North Carolina-USA ${ }^{3,4}$	89
Connecticut-USA ${ }^{1,3}$	88
Florida-USA ${ }^{1,3}$	87
Alabama-USA ${ }^{3}$	87
California-USA ${ }^{1,3}$	86
Dubai-UAE	79
Abu Dhabi-UAE	68

Exhibit B-9. Example 8th-grade mathematics item: 2011

International Benchmark Level	High
Content Domain	Data and Chance
Cognitive Domain	Reasoning

Probability that the marble is red

There are 10 marbles in a bag: 5 red, and 5 blue.
Sue draws a marble from the bag at random. The marble is red.
She puts the marble back into the bag.
What is the probability that the next marble she draws at random is red?
(A.) $\frac{1}{2}$
B. $\frac{4}{10}$
C. $\frac{1}{5}$
D. $\frac{1}{10}$

[^45]| Education system | Percent full credit |
| :---: | :---: |
| International Avg. | 45 |
| Singapore ${ }^{1}$ | 78 |
| Korea, Rep. of | 76 |
| Australia | 75 |
| England-GBR ${ }^{2}$ | 72 |
| Japan | 70 |
| Chinese Taipei-CHN | 70 |
| New Zealand | 68 |
| Slovenia | 67 |
| United States ${ }^{1}$ | 66 |
| Finland | 66 |
| Sweden | 65 |
| Norway | 64 |
| Hong Kong-CHN | 64 |
| Israel ${ }^{3}$ | 59 |
| Hungary | 51 |
| Lithuania ${ }^{4}$ | 51 |
| Russian Federation ${ }^{1}$ | 47 |
| Turkey | 44 |
| Italy | 42 |
| Macedonia, Rep. of ${ }^{5}$ | 41 |
| Romania | 39 |
| Armenia | 39 |
| Palestinian Nat'I Auth. ${ }^{5}$ | 38 |
| Ukraine | 38 |
| Kazakhstan | 38 |
| Thailand | 37 |
| United Arab Emirates | 36 |
| Indonesia ${ }^{5}$ | 35 |
| Iran, Islamic Rep. of ${ }^{5}$ | 35 |
| Saudi Arabia ${ }^{5}$ | 35 |
| Qatar ${ }^{5}$ | 34 |
| Georgia ${ }^{4,6}$ | 33 |
| Chile | 31 |
| Ghana ${ }^{7}$ | 28 |
| Malaysia | 28 |
| Jordan ${ }^{5}$ | 26 |
| Bahrain ${ }^{5}$ | 24 |
| Oman ${ }^{5}$ | 23 |
| Lebanon | 21 |
| Tunisia | 20 |
| Syrian Arab Republic ${ }^{5}$ | 18 |
| Morocco ${ }^{7}$ | 16 |

Benchmarking education systems	Percent full credit
Massachusetts-USA 1,4	79
Minnesota-USA 4	78
Connecticut-USA 1,4	78
Colorado-USA	76
Indiana-USA	
North Carolina-USA	
Alberta-CAN	76
Ontario-CAN	74
Quebec-CAN	73
Florida-USA	73
California-USA	72
Alabama-USA ${ }^{1,4}$	60
Dubai-UAE	60
Abu Dhabi-UAE	52

Exhibit B-10. Example 8th-grade mathematics item: 2011

International Benchmark Level	Advanced
Content Domain	Geometry
Cognitive Domain	Applying

Degrees minute hand of clock turns

How many degrees does a minute hand of a clock turn through from 6:20 a.m. to 8:00 a.m. on the same day?
A. 680°
(B.) 600°
C. 540°
D. 420°

[^46]| Education system | Percent full credit |
| :---: | :---: |
| International Avg. | 29 |
| Korea, Rep. of | 63 |
| Japan | 58 |
| Singapore ${ }^{1}$ | 57 |
| Chinese Taipei-CHN | 56 |
| Hong Kong-CHN | 51 |
| Finland | 32 |
| Sweden | 31 |
| England-GBR ${ }^{2}$ | 31 |
| Slovenia | 31 |
| Morocco ${ }^{3}$ | 30 |
| Hungary | 30 |
| Syrian Arab Republic ${ }^{4}$ | 30 |
| Palestinian Nat'l Auth. ${ }^{4}$ | 29 |
| Russian Federation ${ }^{1}$ | 29 |
| Saudi Arabia ${ }^{4}$ | 28 |
| Macedonia, Rep. of ${ }^{4}$ | 28 |
| Turkey | 27 |
| Israel ${ }^{5}$ | 27 |
| Australia | 27 |
| New Zealand | 26 |
| Iran, Islamic Rep. of ${ }^{4}$ | 26 |
| Tunisia | 26 |
| Malaysia | 26 |
| Ukraine | 25 |
| Armenia | 25 |
| Italy | 25 |
| Jordan ${ }^{4}$ | 25 |
| Lebanon | 24 |
| Bahrain ${ }^{4}$ | 24 |
| Romania | 23 |
| Norway | 23 |
| Kazakhstan | 23 |
| United Arab Emirates | 23 |
| United States ${ }^{1}$ | 22 |
| Qatar ${ }^{4}$ | 22 |
| Oman ${ }^{4}$ | 21 |
| Lithuania ${ }^{6}$ | 21 |
| Ghana ${ }^{3}$ | 21 |
| Georgia ${ }^{6,7}$ | 19 |
| Indonesia ${ }^{4}$ | 19 |
| Thailand | 16 |
| Chile | - |
| Benchmarking education systems | Percent full credit |
| Quebec-CAN | 30 |
| Minnesota-USA ${ }^{6}$ | 29 |
| Ontario-CAN ${ }^{1}$ | 26 |
| North Carolina-USA ${ }^{5,6}$ | 26 |
| Massachusetts-USA ${ }^{1,6}$ | 25 |
| Dubai-UAE | 24 |
| Connecticut-USA ${ }^{1,6}$ | 24 |
| Abu Dhabi-UAE | 23 |
| Indiana-USA ${ }^{1,6}$ | 19 |
| Alberta-CAN ${ }^{1}$ | 19 |
| Alabama-USA ${ }^{6}$ | 18 |
| Colorado-USA ${ }^{6}$ | 18 |
| Florida-USA ${ }^{1,6}$ | 18 |
| California-USA ${ }^{1,6}$ | 17 |

Exhibit B-11. Example 4th-grade science item: 2011

International Benchmark Level	Low
Content Domain	Life Science
Cognitive Domain	Applying

Birds/bats/butterflies share

What do birds, bats and butterflies have in common?
A. feathers
B. hair
C. internal skeleton
D. wings

[^47]| Education system | Percent full credit |
| :---: | :---: |
| International Avg. | 83 |
| Korea, Rep. of | 99 |
| United States ${ }^{1}$ | 96 |
| Croatia ${ }^{1}$ | 95 |
| Singapore ${ }^{1}$ | 95 |
| Finland | 95 |
| Sweden | 95 |
| Ireland | 95 |
| Austria | 94 |
| England-GBR | 94 |
| Norway ${ }^{2}$ | 93 |
| Germany | 93 |
| New Zealand | 93 |
| Portugal | 92 |
| Russian Federation | 92 |
| Australia | 92 |
| Slovenia | 91 |
| Netherlands ${ }^{3}$ | 91 |
| Northern Ireland-GBR ${ }^{3}$ | 91 |
| Denmark ${ }^{1}$ | 91 |
| Serbia ${ }^{1}$ | 91 |
| Czech Republic | 90 |
| Poland | 90 |
| Slovak Republic | 89 |
| Italy | 89 |
| Lithuania ${ }^{1,4}$ | 89 |
| Belgium (Flemish)-BEL | 88 |
| Spain | 87 |
| Japan | 87 |
| Thailand | 86 |
| Georgia ${ }^{4,5}$ | 86 |
| Hungary | 84 |
| Chile | 84 |
| Armenia | 83 |
| Chinese Taipei-CHN | 83 |
| Romania | 83 |
| Malta | 82 |
| Hong Kong-CHN ${ }^{1}$ | 79 |
| Kazakhstan ${ }^{1}$ | 79 |
| Turkey | 79 |
| Bahrain | 75 |
| Azerbaijan ${ }^{1,5}$ | 75 |
| United Arab Emirates | 74 |
| Saudi Arabia | 70 |
| Iran, Islamic Rep. of | 62 |
| Qatar ${ }^{1}$ | 62 |
| Tunisia ${ }^{6}$ | 61 |
| Oman | 61 |
| Kuwait ${ }^{4,6}$ | 54 |
| Morocco ${ }^{7}$ | 47 |
| Yemen ${ }^{7}$ | 31 |
| Benchmarking education systems | Percent full credit |
| Florida-USA ${ }^{4,8}$ | 97 |
| Alberta-CAN ${ }^{1}$ | 96 |
| North Carolina-USA ${ }^{1,4}$ | 95 |
| Ontario-CAN | 93 |
| Quebec-CAN | 92 |
| Dubai-UAE | 79 |
| Abu Dhabi-UAE | 70 |

Exhibit B-12. Example 4th-grade science item: 2011

International Benchmark Level	Intermediate
Content Domain	Physical Science
Cognitive Domain	Knowing

Temperature of ice, steam, water

Water, ice, and steam all have different temperatures.

What is the order from coldest to hottest?

A. ice, water, steam
B. ice, steam, water
C. steam, ice, water
D. steam, water, ice

- Not available.
${ }^{1}$ National Defined Population covers 90 to 95 percent of National Target Population (see appendix A).
${ }^{2}$ Met guidelines for sample participation rates only after replacement schools were included.
${ }^{3}$ Nearly satisfied guidelines for sample participation rates after replacement schools were included.
${ }^{4}$ National Target Population does not include all of the International Target Population (see appendix A).
${ }^{5}$ Exclusion rates for Azerbaijan and Georgia are slightly underestimated as some conflict zones were not covered and no official statistics were available.
${ }^{6}$ The TIMSS International Study Center has reservations about the reliability of the average achievement score because the percentage of students with achievement too low for estimation exceeds 15 percent, though it is less than 25 percent.
${ }^{7}$ The TIMSS International Study Center has reservations about the reliability of the average achievement score because the percentage of students with achievement too low for estimation exceeds 25 percent.
${ }^{8}$ National Defined Population covers less than 90 percent, but at least 77 percent, of National Target Population (see appendix A).
NOTE: Education systems are sorted by 2011 average percent correct. The answer shown illustrates the type of student response that was given full credit.
SOURCE: International Association for the Evaluation of Educational Achievement (IEA), Trends in International Mathematics and Science Study (TIMSS), 2011.

Education system	Percent full credit
International Avg.	73
United States ${ }^{1}$	90
Netherlands ${ }^{2}$	88
Singapore ${ }^{1}$	87
Croatia ${ }^{1}$	87
Czech Republic	86
Hong Kong-CHN ${ }^{1}$	86
Italy	84
Russian Federation	84
Serbia ${ }^{1}$	84
Belgium (Flemish)-BEL	84
Australia	83
Slovak Republic	83
Denmark ${ }^{1}$	83
Finland	82
Spain	81
Hungary	81
Slovenia	80
Chile	80
England-GBR	80
Chinese Taipei-CHN	80
Korea, Rep. of	80
Austria	79
Northern Ireland-GBR2	79
Germany	79
Sweden	79
New Zealand	78
Ireland	76
Norway ${ }^{3}$	75
Kazakhstan ${ }^{1}$	73
Japan	72
Turkey	71
Romania	71
Bahrain	71
Lithuania ${ }^{1,4}$	70
Malta	70
United Arab Emirates	69
Saudi Arabia	67
Azerbaijan ${ }^{1,5}$	65
Poland	63
Georgia ${ }^{4,5}$	62
Iran, Islamic Rep. of	61
Qatar ${ }^{1}$	61
Armenia	59
Oman	56
Kuwait ${ }^{4,6}$	55
Thailand	55
Tunisia ${ }^{6}$	41
Morocco ${ }^{7}$	37
Yemen ${ }^{7}$	29
Portugal	-
Benchmarking education systems	Percent full credit
Florida-USA ${ }^{4,8}$	94
North Carolina-USA ${ }^{1,4}$	90
Alberta-CAN ${ }^{1}$	86
Ontario-CAN	85
Dubai-UAE	73
Quebec-CAN	72
Abu Dhabi-UAE	70

www.manaraa.cBin 1

Exhibit B-13. Example 4th-grade science item: 2011

International Benchmark Level	High
Content Domain	Life Science
Cognitive Domain	Reasoning

Better way to travel around town

The pictures above show two ways of traveling around town.
A. Which way of traveling is better for the environment?
(Check one box.)
\square Bicycle
\square Motorbike
B. Explain your answer.

atmonenar

[^48]

Exhibit B-14. Example 4th-grade science item: 2011

International Benchmark Level	Advanced
Content Domain	Earth Science
Cognitive Domain	Applying

Disadvantage to farming by a river

The picture below shows a river flowing across a plain.

Farming is carried out on the plain and near the river.
There are advantages and disadvantages to farming along a river.
B. Describe one disadvantage.

[^49]
www.manaraa.cBril 3

Exhibit B-15. Example 8th-grade science item: 2011

International Benchmark Level	Low
Content Domain	Chemistry
Cognitive Domain	Applying

Which rod causes the bulb to light?

Rods made of different materials are connected between points P and Q in the circuit diagram shown below.

Which rod would cause the bulb to light?

A.
copper rod
B. wood rod
C. glass rod
D. plastic rod

[^50]| Education system | Percent full credit |
| :---: | :---: |
| International Avg. | 88 |
| Russian Federation ${ }^{1}$ | 97 |
| Hong Kong-CHN | 96 |
| Lithuania ${ }^{2}$ | 96 |
| Singapore ${ }^{1}$ | 96 |
| Israel ${ }^{3}$ | 95 |
| Slovenia | 95 |
| England-GBR ${ }^{4}$ | 95 |
| Finland | 94 |
| Chinese Taipei-CHN | 94 |
| Japan | 94 |
| Chile | 94 |
| Thailand | 93 |
| Sweden | 93 |
| Indonesia | 92 |
| New Zealand | 92 |
| Turkey | 92 |
| Iran, Islamic Rep. of | 91 |
| Italy | 91 |
| Morocco | 91 |
| United States ${ }^{1}$ | 90 |
| Australia | 89 |
| Tunisia | 88 |
| Korea, Rep. of | 88 |
| Jordan | 88 |
| Palestinian Nat'l Auth. | 87 |
| Norway | 87 |
| Romania | 87 |
| Syrian Arab Republic | 87 |
| Hungary | 87 |
| Ukraine | 86 |
| United Arab Emirates | 84 |
| Malaysia | 84 |
| Bahrain | 83 |
| Macedonia, Rep. of | 83 |
| Qatar | 80 |
| Saudi Arabia | 80 |
| Kazakhstan | 80 |
| Georgia ${ }^{2,5}$ | 80 |
| Armenia | 79 |
| Lebanon | 78 |
| Oman | 73 |
| Ghana ${ }^{6}$ | 69 |
| Benchmarking education systems | Percent full credit |
| Alberta-CAN ${ }^{1}$ | 95 |
| Indiana-USA ${ }^{1,2}$ | 95 |
| Minnesota-USA ${ }^{2}$ | 93 |
| Massachusetts-USA ${ }^{1,2}$ | 93 |
| North Carolina-USA ${ }^{2,3}$ | 93 |
| Connecticut-USA ${ }^{1,2}$ | 92 |
| Florida-USA ${ }^{1,2}$ | 90 |
| Ontario-CAN ${ }^{1}$ | 90 |
| Quebec-CAN | 90 |
| Colorado-USA ${ }^{2}$ | 90 |
| Dubai-UAE | 90 |
| Alabama-USA ${ }^{2}$ | 87 |
| California-USA ${ }^{1,2}$ | 85 |
| Abu Dhabi-UAE | 83 |

Exhibit B-16. Example 8th-grade science item: 2011

International Benchmark Level	Intermediate
Content Domain	Biology
Cognitive Domain	Knowing

Cells that destroy bacteria

Bacteria that enter the body are destroyed by which type of cells?
A. white blood cells
B. red blood cells
C. kidney cells
D. lung cells

Education system	Percent full credit
International Avg.	61
Chinese Taipei-CHN	86
Singapore ${ }^{1}$	84
Korea, Rep. of	80
Italy	78
Japan	77
United States ${ }^{1}$	76
Sweden	74
Thailand	73
England-GBR ${ }^{2}$	71
Iran, Islamic Rep. of	71
Australia	70
Israel ${ }^{3}$	70
Lithuania ${ }^{4}$	68
Lebanon	68
Tunisia	68
Finland	68
Saudi Arabia	67
Kazakhstan	67
Hong Kong-CHN	66
Indonesia	66
Hungary	64
New Zealand	62
Romania	60
Macedonia, Rep. of	60
Syrian Arab Republic	60
Russian Federation ${ }^{1}$	59
Qatar	59
Bahrain	58
United Arab Emirates	57
Armenia	55
Malaysia	54
Norway	54
Palestinian Nat'I Auth.	52
Chile	48
Jordan	48
Oman	43
Ukraine	42
Ghana ${ }^{5}$	40
Turkey	37
Georgia ${ }^{4,6}$	35
Morocco	31
Slovenia	30
Benchmarking education systems	Percent full credit
Indiana-USA ${ }^{1,4}$	85
Minnesota-USA ${ }^{4}$	84
Massachusetts-USA ${ }^{1,4}$	79
Connecticut-USA ${ }^{1,4}$	79
North Carolina-USA ${ }^{3,4}$	79
Florida-USA ${ }^{1,4}$	78
Alberta-CAN ${ }^{1}$	77
Ontario-CAN ${ }^{1}$	77
Colorado-USA ${ }^{4}$	76
Alabama-USA ${ }^{4}$	74
Dubai-UAE	70
California-USA ${ }^{1,4}$	69
Quebec-CAN	60
Abu Dhabi-UAE	56

${ }^{1}$ National Defined Population covers 90 to 95 percent of National Target Population (see appendix A).
${ }^{2}$ Nearly satisfied guidelines for sample participation rates after replacement schools were included.
${ }^{3}$ National Defined Population covers less than 90 percent, but at least 77 percent, of National Target Population (see appendix A).
${ }^{4}$ National Target Population does not include all of the International Target Population (see appendix A).
${ }^{5}$ The TIMSS International Study Center has reservations about the reliability of the average achievement score because the percentage of students with achievement too low for estimation exceeds 15 percent, though it is less than 25 percent.
${ }^{6}$ Exclusion rates for Georgia are slightly underestimated as some conflict zones were not covered and no official statistics were available.
NOTE: Education systems are sorted by 2011 average percent correct. The answer shown illustrates the type of student response that was given full credit.
SOURCE: International Association for the Evaluation of Educational Achievement (IEA), Trends in International Mathematics and Science Study (TIMSS), 2011.

Exhibit B-17. Example 8th-grade science item: 2011

International Benchmark Level	High
Content Domain	Earth Science
Cognitive Domain	Knowing

Volcanic eruption effects

State one way that a volcanic eruption can affect the environment.
The hot magma can malt any thing

S032126

away

[^51]

Exhibit B-18. Example 8th-grade science item: 2011

International Benchmark Level	Advanced
Content Domain	Physics
Cognitive Domain	Reasoning

Water wheel: Faster rotation

The diagram shows water flowing from a tank and rotating a wheel.

C. Write one change to the system that will make the wheel rotate faster.

[^52]| Education system | Percent full credit |
| :---: | :---: |
| International average | 27 |
| Singapore ${ }^{1}$ | 67 |
| Japan | 58 |
| Hong Kong-CHN | 46 |
| Korea, Rep. of | 44 |
| Israel ${ }^{2}$ | 44 |
| Chinese Taipei-CHN | 44 |
| England-GBR ${ }^{3}$ | 42 |
| Finland | 41 |
| Iran, Islamic Rep. of | 40 |
| Turkey | 37 |
| Russian Federation ${ }^{1}$ | 37 |
| Australia | 36 |
| Slovenia | 35 |
| Hungary | 34 |
| Norway | 31 |
| Ukraine | 31 |
| Lithuania ${ }^{4}$ | 31 |
| New Zealand | 29 |
| United States ${ }^{1}$ | 28 |
| Sweden | 26 |
| Syrian Arab Republic | 25 |
| Romania | 25 |
| Italy | 23 |
| Oman | 23 |
| Kazakhstan | 20 |
| Tunisia | 20 |
| Palestinian Nat'l Auth. | 20 |
| Bahrain | 18 |
| Jordan | 18 |
| United Arab Emirates | 18 |
| Saudi Arabia | 17 |
| Macedonia, Rep. of | 17 |
| Qatar | 17 |
| Malaysia | 16 |
| Armenia | 16 |
| Georgia ${ }^{4,5}$ | 13 |
| Chile | 12 |
| Lebanon | 11 |
| Thailand | 10 |
| Indonesia | 9 |
| Morocco | 5 |
| Ghana ${ }^{6}$ | 3 |
| Benchmarking education systems | Percent full credit |
| Massachusetts-USA ${ }^{1,4}$ | 37 |
| Minnesota-USA ${ }^{4}$ | 35 |
| Alberta-CAN ${ }^{1}$ | 35 |
| Colorado-USA ${ }^{4}$ | 33 |
| Connecticut-USA ${ }^{1,4}$ | 33 |
| Ontario-CAN ${ }^{1}$ | 32 |
| Quebec-CAN | 31 |
| Indiana-USA ${ }^{1,4}$ | 25 |
| Florida-USA ${ }^{1,4}$ | 25 |
| Dubai-UAE | 24 |
| North Carolina-USA ${ }^{2,4}$ | 23 |
| Alabama-USA ${ }^{4}$ | 17 |
| California-USA ${ }^{1,4}$ | 17 |
| Abu Dhabi-UAE | 17 |

Page intentionally left blank

Appendix C: TIMSS-NAEP Comparison

How Does the Content of TIMSS 2011 Compare With That of the NAEP 2011 Mathematics and Science Assessments?

In reporting results on how U.S. students perform, the National Center for Education Statistics (NCES) draws on multiple sources of data in order to capitalize on the information presented in national and international assessments. In the United States, data on 4th-grade and 8th-grade students' mathematics and science achievement come primarily from two sources: the National Assessment of Educational Progress (NAEP) and the Trends in International Mathematics and Science Study (TIMSS). TIMSS provides internationally comparable data on student performance, while NAEP tracks performance nationally as well as in state and national subpopulations. This comparative study of TIMSS 2011 and NAEP 2009/2011 revealed important similarities and differences between the two assessments.

In the mathematics portion of the comparative study, the TIMSS 2011 and NAEP 2011 mathematics frameworks both specify five similar mathematical content areas to be assessed (number, measurement, geometry, data, and algebra). However, there are key differences between the two assessments. While both frameworks assess student performance in cognitive dimensions within these content areas, the dimensions are defined differently. For TIMSS, thethree dimensions assessed are knowing, applying, and reasoning, and each grade in TIMSS has a different distribution across these three cognitive domains. For NAEP, the three dimensions are low, moderate, and high, and the distribution of items across grade levels is fixed at 4th grade and 8th grade (25 percent, 50 percent, and 25 percent, respectively). In terms of item content, both TIMSS and NAEP emphasize number at 4th grade and shift the focus to algebra at 8th grade.

Item-by-item content match analyses of the mathematics assessments show a strong content correspondence between TIMSS 2011 and NAEP 2011. Only 1 percent of the 4th-grade items and 3 percent of the TIMSS 2011 8th-grade items could not be fit to a specific objective within the NAEP 2011 mathematics framework. Grade-level fit analyses revealed a slight mismatch between the two assessments. For TIMSS 4thgrade mathematics items, 11 percent were found to align better with the 8th grade in the NAEP mathematics framework. For TIMSS 8th-grade mathematics items, 14 percent were found to align better with the 4th grade or the 12th grade in the NAEP mathematics framework (3 percent and 11 percent, respectively), while 1 percent of the TIMSS 8th-grade items were found to be "no fit" at any grade level in the NAEP 2011
mathematics framework. ${ }^{1}$ Finally, both TIMSS and NAEP assess students using multiple-choice and constructedresponse item formats; however, TIMSS has a relatively equal proportion of items in the two formats at both grade levels, whereas NAEP has a greater proportion of multiplechoice items at both grade levels.

Turning to science, the TIMSS 2011 and NAEP 2009/2011 science frameworks assess similar content areas. However, there are key differences between the two assessments. For example, the two assessments differ in what science content is emphasized at each grade level. At 4th grade, when TIMSS items are mapped onto the NAEP science framework, TIMSS has the most items in life science (44 percent), followed by physical science (39 percent) and then Earth and space sciences (17 percent), compared with NAEP, which has a relatively equal distribution across the three content areas (each has about one-third of the items). At 8th grade, when TIMSS items are mapped onto the NAEP science framework, TIMSS has the most items in physical science (47 percent), followed by life science (34 percent) and then Earth and space sciences (18 percent), whereas NAEP places the greatest emphasis on Earth and space sciences (40 percent), followed by a nearly equal proportion of items in physical science (31 percent) and life science (30 percent).

Item-by-item content match analyses of the science assessments did not show the sort of strong content correspondence between TIMSS 2011 and NAEP 2011 found in the mathematics assessments. In science, 31 percent of TIMSS 4th-grade items and 23 percent of TIMSS 8th-grade items could not be fit with any content statement in the NAEP 2011 science framework. Grade-level fit analyses, likewise, revealed a degree of mismatch between the two assessments. For TIMSS 4th-grade science items, 22 percent were found to align best with the 8th grade in the NAEP science framework, while an additional 18 percent were considered "no fit" for either of the three grade levels (4th, 8th, or 12th) in the NAEP science framework. For TIMSS 8th-grade science items, 14 percent were found to align best with the 4th grade or 12th grade in the NAEP science framework (11 percent and 3 percent, respectively), while an additional 18 percent were considered "no fit" for either of the three grade levels (4th, 8th, or 12th)

[^53]in the NAEP science framework. ${ }^{2}$ Finally, both assessments use similar proportions of multiple-choice and constructedresponse item formats, though the proportion of multiple-choice items is greater in NAEP than in TIMSS at both the 4th and 8thgrades.

In short, the purpose of the assessments, the content coverage, and the grade-level correspondence of the assessment items distinguish TIMSS 2011 from NAEP 2009/2011. The item differences are more noteworthy in the science assessments than in the mathematics assessments. Thus, it is important to bear in mind these differences when interpreting U.S. students' achievement, nationally and internationally, on NAEP and TIMSS.

[^54] by grade level in the science assessments is smaller than the percentage of "no fit" items by content level. This is because some of the content-level "no fit" items were determined to be implied in the NAEP 2011 framework at a particular grade.

Appendix D: Online Resources and Publications

Online Resources

The NCES website (http://nces.ed.gov/timss) provides background information on the TIMSS surveys, copies of NCES publications that relate to TIMSS, information for educators about ways to use TIMSS in the classroom, and data files. The international TIMSS website (http://www.timss. org) includes extensive information on the study, including the international reports and databases.

NCES Publications

The following publications are intended to serve as examples of some of the numerous reports that have been produced in relation to the Trends in International Mathematics and Science Study (TIMSS) by NCES. All of the publications listed here are available at http://nces.ed.gov/timss.

TIMSS 2007 Achievement Report

Gonzales, P., Williams, T., Jocelyn, L., Roey, S., Kastberg, D., and Brenwald, S. (2008). Highlights From TIMSS 2007: Mathematics and Science Achievement of U.S. Fourthand Eighth-Grade Students in an International Context (NCES 2009-001 Revised). National Center for Education Statistics, Institute of Education Sciences, U.S. Department of Education. Washington, DC. http://nces.ed.gov/ pubsearch/pubsinfo.asp?pubid=2009001

TIMSS 2003 Achievement Report

Gonzales, P., Guzmán, J.C., Partelow, L., Pahlke, E., Jocelyn, L., Kastberg, D., and Williams, T. (2004). Highlights From the Trends in International Mathematics and Science Study (TIMSS) 2003 (NCES 2005-005). National Center for Education Statistics, U.S. Department of Education. Washington, DC. http://nces.ed.gov/pubsearch/pubsinfo. asp?pubid=2005005

TIMSS 1999 Achievement Reports

Gonzales, P., Calsyn, C., Jocelyn, L., Mak, K., Kastberg, D., Arafeh, S., Williams, T., and Tsen, W. (2000). Pursuing Excellence: Comparisons of International Eighth-Grade Mathematics and Science Achievement From a U.S. Perspective, 1995 and 1999 (NCES 2001-027). National Center for Education Statistics, U.S. Department of Education. Washington, DC. http://nces.ed.gov/pubsearch/ pubsinfo. asp?pubid=2001028
Gonzales, P., Calsyn, C., Jocelyn, L., Mak, D., Kastberg, D., Arafeh, S., Williams, T., and Tsen, W. (2000). Highlights From TIMSS-R (NCES 2001-027). National Center for Education Statistics, U.S. Department of Education. Washington, DC. http://nces.ed.gov/pubsearch/pubsinfo. man

Roth, K.J., Druker, S.L., Garnier, H., Lemmens, M., Chen, C., Kawanaka, T., Rasmussen, D., Trubacova, S., Warvi, D., Okamoto, Y., Gonzales, P., Stigler, J., and Gallimore, R. (2006). Teaching Science in Five Countries: Results From the TIMSS 1999 Video Study (NCES 2006-011). National Center for Education Statistics, Institute of Education Sciences, U.S. Department of Education. Washington, DC. http://nces.ed.gov/pubsearch/pubsinfo.asp?pubid= 2006011

IEA Publications

The following publications are intended to serve as examples of some of the numerous reports that have been produced in relation to TIMSS by the IEA. All of the publications listed here are available at http://timss.bc.edu.

TIMSS 2011 Achievement Reports

Martin, M.O., Mullis, I.V.S., and Stanco, G.M. (2012). TIMSS 2011 International Results in Science. Chestnut Hill, MA: TIMSS \& PIRLS International Study Center, Boston College. http://timssandpirls.bc.edu/isc/publications.html
Mullis, I.V.S., Martin, M.O., and Arora, A. (2012). TIMSS 2011 International Results in Mathematics. Chestnut Hill, MA: TIMSS \& PIRLS International Study Center, Boston College. http://timssandpirls.bc.edu/isc/publications.html

TIMSS 2007 Achievement Reports

Martin, M.O., Mullis, I.V.S., and Foy, P. (2008). TIMSS 2007 International Science Report: Findings From IEA's Trends in International Mathematics and Science Study at the Fourth and Eighth Grades. Chestnut Hill, MA: Boston College. http://timssandpirls.bc.edu/TIMSS2007/sciencereport.html

Mullis, I.V.S., Martin, M.O., and Foy, P. (2008). TIMSS 2007 International Mathematics Report: Findings From IEA's Trends in International Mathematics and Science Study at the Fourth and Eighth Grades. Chestnut Hill, MA: Boston College. http://timssandpirls.bc.edu/TIMSS2007/ mathreport.html

TIMSS 2003 Achievement Reports

Martin, M.O., Mullis, I.V.S., González, E.J., and Chrostowski, S.J. (2004). TIMSS 2003 International Science Report: Findings From IEA's Trends in International Mathematics and Science Study at the Fourth and Eighth Grades. Chestnut Hill, MA: Boston College. http://timssandpirls.bc.edu/timss2003i/scienceD.html

Mullis, I.V.S., Martin, M.O., González, E.J., and Chrostowski, S.J. (2004). TIMSS 2003 International Mathematics Report: Findings From IEA's Trends in International Mathematics and Science Study at the Fourth and Eighth Grades. Chestnut Hill, MA: Boston College. http://timssandpirls.bc.edu/timss2003i/mathD.htmI

TIMSS 1999 Achievement Reports

Martin, M.O., Mullis, I.V.S., González, E.J., Gregory, K.D., Smith, T.A., Chrostowski, S.J., Garden, R.A., and O'Connor, K.M. (2000). TIMSS 1999 International Science Report: Findings From IEA's Repeat of the Third International Mathematics and Science Study at the Eighth Grade. Chestnut Hill, MA: Boston College. http://timssandpirls.bc. edu/timss1999i/science achievement report.html
Mullis, I.V.S., Martin, M.O., González, E.J., Gregory, K.D., Garden, R.A., O'Connor, K.M., Chrostowski, S.J., and Smith, T.A. (2000). TIMSS 1999 International Mathematics Report: Findings From IEA's Repeat of the Third International Mathematics and Science Study at the Eighth Grade. Chestnut Hill, MA: Boston College. http://timssandpirls.bc.edu/timss1999i/math_achievement report.html

TIMSS 1995 Achievement Reports

Beaton, A.E., Martin, M.O., Mullis, I.V.S., González, E.J., Smith, T.A., and Kelly, D.L. (1996). Science Achievement in the Middle School Years: IEA's Third International Mathematics and Science Study. Chestnut Hill, MA: Boston College. http://timssandpirls.bc.edu/timss1995i/SciencB.html
Beaton, A.E., Mullis, I.V.S., Martin, M.O., González, E.J., Kelly, D.L., and Smith, T.A. (1996). Mathematics Achievement in the Middle School Years: IEA's Third International Mathematics and Science Study. Chestnut Hill, MA: Boston College. http://timssandpirls.bc.edu/timss1995i/MathB.html
Martin, M.O., Mullis, I.V.S., Beaton, A.E., González, E.J., Smith, T.A., and Kelly, D.L. (1997). Science Achievement in the Primary School Years: IEA's Third International Mathematics and Science Study. Chestnut Hill, MA: Boston College. http://timssandpirls.bc.edu/timss1995i/SciencA.html
Mullis, I.V.S., Martin, M.O., Beaton, A.E., González, E.J., Kelly, D.L., and Smith, T.A. (1997). Mathematics Achievement in the Primary School Years: IEA's Third International Mathematics and Science Study. Chestnut Hill, MA: Boston College. http://timssandpirls.bc.edu/timss1995i/MathA.html
Mullis, I.V.S., Martin, M.O., Beaton, A.E., González, E.J., Kelly, D.L., and Smith, T.A. (1998). Mathematics and Science Achievement in the Final Year of Secondary School: IEA's Third International Mathematics and Science Study. Chestnut Hill, MA: Boston College. http://timssandpirls.bc. edu/timss1995i/MathScienceC.html

TIMSS Technical Reports and Frameworks

Martin, M.O., Gregory, K.D., and Stemler, S.E. (2000). TIMSS 1999 Technical Report. Chestnut Hill, MA: Boston College. http://timssandpirls.bc.edu/timss1999i/tech report.html
Martin, M.O., and Kelly, D.L. (Eds.). (1996). Third International Mathematics and Science Study Technical Report, Volume I: Design and Development. Chestnut Hill, MA: Boston College. http://timssandpirls.bc.edu/timss1995i/TechVol1.html

Martin, M.O., and Kelly, D.L. (Eds.). (1998). Third International Mathematics and Science Study Technical Report, Volume II: Implementation and Analysis, Primary and Middle School Years. Chestnut Hill, MA: Boston College. http://timssandpirls.bc.edu/timss1995i/TechVol2.html
Martin, M.O., and Kelly, D.L. (Eds.). (1999). Third International Mathematics and Science Study Technical Report, Volume III: Implementation and Analysis, Final Year of Secondary School. Chestnut Hill, MA: Boston College. http://timssandpirls.bc.edu/timss1995i/TechVol3.html

Martin, M.O., and Mullis, I.V.S. (Eds.). (2011). TIMSS and PIRLS Methods and Procedures. http://timssandpirls.bc. edu/methods/index.html.
Martin, M.O., Mullis, I.V.S., and Chrostowski, S.J. (2004). TIMSS 2003 Technical Report. Chestnut Hill, MA: Boston College. http://timssandpirls.bc.edu/timss2003i/technicalD.html

Mullis, I.V.S, Martin, M.O., Ruddock, G.J., O'Sullivan, C.Y., Arora, A., and Erberber, E. (2005). TIMSS 2007 Assessment Frameworks. Chestnut Hill, MA: Boston College. http://timssandpirls.bc.edu/TIMSS2007/frameworks.html
Mullis, I.V.S., Martin, M.O., Smith, T.A., Garden, R.A., Gregory, K.D., González, E.J., Chrostowski, S.J., and O'Connor, K.M. (2003). TIMSS Assessment Frameworks and Specifications 2003: 2nd Edition. Chestnut Hill, MA: Boston College. http://timssandpirls.bc.edu/timss2003i/frameworksD.html

Olson, J.F., Martin, M.O., and Mullis, I.V.S. (2008). TIMSS 2007 Technical Report. Chestnut Hill, MA: Boston College. http://timssandpirls.bc.edu/TIMSS2007/techreport.html

TIMSS Encyclopedia

Mullis, I.V.S., Martin, M.O., Minnich, C.A., Stanco, G.M., Arora, A., Centurino, V.A.S., and Castle, C.E. (2012). TIMSS 2011 Encyclopedia: Education Policy and Curriculum in Mathematics and Science, Volumes 1 and 2. Chestnut Hill, MA: International Study Center, Boston College. http:// timssandpirls.bc.edu/timss2011/encyclopedia-timss.html

Page intentionally left blank

Page intentionally left blank

[^0]: ${ }^{1}$ At grade 4, a total of 369 schools and 12,569 students participated in the United States in 2011. At grade 8, a total of 501 schools and 10,477 students participated. The overall weighted school response rate in the United States was 79 percent at grade 4 before the use of substitute schools. The weighted student response rate at grade 4 was 95 percent. At grade 8, the overall weighted school response rate before the use of substitute schools was 87 percent. The weighted student response rate at grade 8 was 94 percent.
 ${ }^{2}$ The 57 education systems that administered TIMSS at grade 4 overlap only partially with the set of 56 education systems that administered it at grade 8 (see table 1 for details). The total number of education systems reported here differs from the total number reported in the international TIMSS reports (Mullis et al. 2012; Martin et al. 2012) because some education systems administered the TIMSS grade 4 assessment to 6th-grade students, and some administered the TIMSS grade 8 assessment to 9 th-grade students. Education systems that did not assess students at the target grade level are not counted or included in this report.

[^1]: ${ }^{3}$ TIMSS provides two overall scales-mathematics and science-as well as several content and cognitive domain subscales for each of the overall scales. The scores are reported on a scale from 0 to 1,000, with the TIMSS scale average set at 500 and standard deviation set at 100 .
 ${ }^{4}$ TIMSS reports on four benchmarks to describe student performance in mathematics and science. Each benchmark is associated with a score on the achievement scale and a description of the knowledge and skills demonstrated by students at that level of achievement. The Advanced international benchmark indicates that students scored 625 or higher. More information on the benchmarks can be found in the main body of the report and appendix A.

[^2]: ${ }^{3}$ The International Study Center takes its name from the two main IEA studies it coordinates: the Trends in International Mathematics and Science Study (TIMSS) and the Progress in International Reading Literacy Study (PIRLS).

[^3]: ${ }^{4}$ The ISCED was developed by the United Nations Educational, Scientific, and Cultural Organization (UNESCO) to assist countries in providing comparable, cross-national data. ISCED Level 1 is termed primary schooling, and in the United States is equivalent to the first through sixth grades (Matheson et al. 1996).

[^4]: ${ }^{5}$ The sample frame for public schools in the United States was based on the 2011 National Assessment of Educational Progress (NAEP) sampling frame. The 2011 NAEP sampling frame was based on the 2007-08 Common Core of Data (CCD). The data for private schools are from the 2007-08 Private School Universe Survey (PSS). Any school containing at least one grade 4 or one grade 8 class was included in the school sampling frame. For more information about the NAEP sampling frame, see http://nces.ed.gov/nationsreportcard/tdw/ sample design/.
 ${ }^{6}$ Two kinds of response rates are reported here in the interests of comparability with the TIMSS international reports, which report response rates before and after "replacement." However, NCES standards advise that substitute schools should not be included in the calculation of response rates (Statistical Standard 1-3-8; National Center for Education Statistics 2002). Thus, response rates calculated before the use of substitute schools ("before replacement") are consistent with this standard, while response rates calculated with the inclusion of substitute schools ("after replacement") are not consistent with NCES standards.

[^5]: ${ }^{7}$ Even though the number and composition of education systems participating in TIMSS have changed between 1995 and 2011, comparisons between the 2011 results and prior results are still possible because the achievement scores in each of the TIMSS assessments are placed on a scale which is not dependent on the list of participating countries in any particular year. A brief description of the assessment equating and scaling is presented in appendix A to this volume. A more detailed presentation can be found in the TIMSS and PIRLS Methods and Procedures (Martin and Mullis 2011).
 ${ }^{8}$ For the TIMSS 1995 and 1999 assessments, the TIMSS scales were anchored using percentiles (90th, 75th, 50th, and 25th percentiles) instead of score cutpoints. By TIMSS 2003, however, it was clear that, with different education systems participating in each TIMSS cycle (and potentially different achievement for education systems in each cycles), TIMSS needed a set of points to serve as benchmarks that would not change in the future, that made sense, and that were similar to the points used in 1999. For these reasons, TIMSS selected the set of four score points $(400,475,550$, and 625$)$ with equal intervals on the mathematics and science achievement scales that have been used ever since 2003 as the international benchmark cutpoints.

[^6]: ${ }^{10}$ The international weighting procedures created a nonresponse adjustment class for each explicit stratum; see the TIMSS and PIRLS Methods and Procedures (Martin and Mullis 2011) for details. In the case of the U.S. 4thgrade sample, 8 explicit strata were formed by poverty level, school control, and Census region. The procedures could not be varied for individual countries to account for any specific needs. Therefore, the U.S. nonresponse bias analyses could have no influence on the weighting procedures and were undertaken after the weighting process was complete.

[^7]: ${ }^{11}$ A score of 500 represents the international average of participants in the first administration of TIMSS in 1995. The TIMSS scale is the same in each administration such that a value of 500 in 2011 equals 500 in 1995.

[^8]: © Average score is higher than U.S. average score.
 \checkmark Average score is lower than U.S. average score.
 ${ }^{1}$ National Defined Population covers 90 to 95 percent of National Target Population (see appendix A).
 ${ }^{2}$ National Defined Population covers less than 90 percent, but at least 77 percent, of National Target Population (see appendix A).
 ${ }^{3}$ Nearly satisfied guidelines for sample participation rates after replacement schools were included.
 ${ }^{4}$ National Target Population does not include all of the International Target Population (see appendix A).
 ${ }^{5}$ Exclusion rates for Georgia are slightly underestimated as some conflict zones were not covered and no official statistics were available.
 ${ }^{6}$ The TIMSS International Study Center has reservations about the reliability of the average achievement score because the percentage of students with achievement too low for estimation exceeds 15 percent, though it is less than 25 percent.
 ${ }^{7}$ The TIMSS International Study Center has reservations about the reliability of the average achievement score because the percentage of students with achievement too low for estimation exceeds 25 percent. NOTE: Education systems are ordered by 2011 average score. Italics indicate participants identified and counted in this report as an education system and not as a separate country. Participants that did not administer TIMSS at the target grade are not shown; see the international report for their results. All U.S. state data are based on public school students only. All average scores reported as higher or lower than the U.S. average score are different at the .05 level of statistical significance. The tests for significance take into account the standard error for the reported difference. Thus, a small difference between the United States and one education system may be significant while a large difference between the United States and another education system may not be significant. The standard errors of the estimates are shown in table E-2 available at http://nces.ed.gov/pubsearch/pubsinfor.asp?pubid=2013009.
 SOURCE: International Association for the Evaluation of Educational Achievement (IEA), Trends in International Mathematics and Science Study (TIMSS), 2011.

[^9]: ${ }^{12}$ Several participating countries that are reported with the 2011 results in other tables in this report are excluded from these comparisons over time based on the International Study Center (ISC) review of the assessment results. Kuwait, Morocco, and Yemen participated at grade 4 in both 2007 or 1995 and 2011, but had unreliable 2011 mathematics scores. Armenia, Kazakhstan, and Qatar also participated in 2007 and 2011 at grade 4, but their 2007 mathematics scores were not comparable to their 2011 scores. Kuwait, Italy, and Thailand participated in 1995 and 2011 at both grades 4 and 8, but their 1995 mathematics scores were not comparable to their 2011 scores. Ghana and Morocco participated in 2007 and 2011 at grade 8, but their 2011 mathematics scores were unreliable. Armenia, Qatar, Saudi Arabia, and Turkey participated in 2007 and 2011 at grade 8, but their 2007 mathematics scores were not comparable to their 2011 scores. Lastly, Indonesia and Israel participated in both 1995 and 2011 at grade 8, but their 1995 mathematics scores were not comparable to their 2011 scores.

[^10]: 0 Score is higher than U.S. score.
 (1) Score is lower than U.S. score.

 - Change from 2007 to 2011.

 Change from 1995 to 2011.
 \# Rounds to zero.

[^11]: Advanced benchmark
 High benchmark

 - Intermediate benchmark

 Low benchmark
 \# Rounds to zero.
 ${ }^{*} p<.05$. Percentage is significantly different from the U.S. percentage at the same benchmark.
 ${ }^{1}$ National Defined Population covers 90 to 95 percent of National Target Population (see appendix A).
 ${ }^{2}$ National Defined Population covers less than 90 percent, but at least 77 percent of National Target Population (see appendix A).
 ${ }^{3}$ Nearly satisfied guidelines for sample participation rates after replacement schools were included.
 ${ }^{4}$ National Target Population does not include all of the International Target Population (see appendix A).
 ${ }^{5}$ The TIMSS International Study Center has reservations about the reliability of the average achievement score because the percentage of students with achievement too low for estimation exceeds 15 percent, though it is less than 25 percent.
 ${ }^{6}$ Exclusion rates for Georgia are slightly underestimated as some conflict zones were not covered and no official statistics were available.
 ${ }^{7}$ The TIMSS International Study Center has reservations about the reliability of the average achievement score because the percentage of students with achievement too low for estimation exceeds 25 percent.
 NOTE: Education systems are ordered by percentage at Advanced international benchmark. Italics indicate participants identified and counted in this report as an education system and not as a separate country. The TIMSS international median represents all participating TIMSS education systems, including the United States, shown in the main part of the figure; benchmarking education systems are not included in the median. Participants that did not administer TIMSS at the target grade are not shown; see the international report for their results. All U.S. state data are based on public school students only. The tests for significance take into account the standard error for the reported difference. Thus, a small difference between the United States and one education system may be significant while a large difference between the United States and another education system may not be significant. The standard errors of the estimates are shown in table E-8 available at http://nces. ed.gov/pubsearch/pubsinfor.asp?pubid=2013009.

[^12]: NOTE: Italics indicate participants identified and counted in this report as an education system and not as a separate country.
 SOURCE: International Association for the Evaluation of Educational Achievement (IEA), Trends in International Mathematics and Science Study (TIMSS), 2011.

[^13]: NOTE: Italics indicate participants identified and counted in this report as an education system and not as a separate country.
 SOURCE: International Association for the Evaluation of Educational Achievement (IEA), Trends in International Mathematics and Science Study (TIMSS), 2011.

[^14]: NOTE: Italics indicate participants identified and counted in this report as an education system and not as a separate country.
 SOURCE: International Association for the Evaluation of Educational Achievement (IEA), Trends in International Mathematics and Science Study (TIMSS), 2011

[^15]: NOTE: Italics indicate participants identified and counted in this report as an education system and not as a separate country.

[^16]: NOTE: Italics indicate participants identified and counted in this report as an education system and not as a separate country.
 SOURCE: International Association for the Evaluation of Educational Achievement (IEA), Trends in International Mathematics and Science Study (TIMSS), 2011.

[^17]: NOTE: Italics indicate participants identified and counted in this report as an

[^18]: NOTE: Italics indicate participants identified and counted in this report as an education system and not as a separate country.
 SOURCE: International Association for the Evaluation of Educational Achievement (IEA), Trends in International Mathematics and Science Study (TIMSS), 2011.

[^19]: ${ }^{17}$ Several participating countries that are reported with the 2011 results in other tables in this report are excluded from these comparisons based on International Study Center (ISC) review of assessment results. Morocco and Yemen participated in both 2007 or 1995 and 2011 at grade 4, but had unreliable 2011 science scores. Armenia, Kazakhstan, and Qatar also participated in both 2007 and 2011 at grade 4, but their 2007 science scores were not comparable to their 2011 scores. Armenia, Qatar, Saudi Arabia, and Turkey participated in both 2007 and 2011 at grade 8, but their 2007 science scores were not comparable to their 2011 scores. Similarly, Italy, Kuwait, and Thailand participated in both 1995 and 2011 at grade 4 and 8, but their 1995 science scores were not comparable to their 2011 scores.
 ${ }^{18}$ Although the average score of the Russian Federation did not increase measurably, its standing relative to the United States moved from being not measurably different in 2007 to scoring above the United States in 2011.
 ${ }^{19}$ Although the average score of Hungary and Ontario-CAN did not decrease measurably, their standing relative to the United States moved from being not measurably different in 2007 to scoring below the United States in 2011.

[^20]: 0 Score is higher than U.S. score.
 (7) Score is lower than U.S. score.

 - Change from 2007 to 2011.
 \square Change from 1995 to 2011.
 \# Rounds to zero.
 ${ }^{*} p<.05$. Change in average scores is significant.
 ${ }^{1}$ The change in average score is calculated by subtracting the 2007 or 1995 estimate, respectively, from the 2011 estimate using unrounded numbers.
 ${ }^{2}$ National Defined Population covers 90 to 95 percent of National Target Population for 2011 (see appendix A).
 ${ }^{3}$ Met guidelines for sample participation rates only after replacement schools were included for 2011.
 ${ }^{4}$ National Target Population does not include all of the International Target Population for 2011 (see appendix A).
 ${ }^{5}$ Nearly satisfied guidelines for sample participation rates after replacement schools were included for 2011.
 ${ }^{6}$ Exclusion rates for Azerbaijan and Georgia are slightly underestimated as some conflict zones were not covered and no official statistics were available for 2011.
 ${ }^{7}$ The TIMSS International Study Center has reservations about the reliability of the average achievement score because the percentage of students with achievement too low for estimation in 2011 exceeds 15 percent, though it is less than 25 percent.
 NOTE: Education systems are ordered by 2011 average scores. Italics indicate participants identified and counted in this report as an education system and not as a separate country. All education systems met international sampling and other guidelines in 2011, except as noted. Data are not shown for some education systems because comparable data from previous cycles are not available. Participants that did not administer TIMSS at the target grade are not shown; see the international report for their results. All U.S. state data are based on public school students only.
 For 1995, Korea, Portugal, and Ontario-CAN had National Defined Population covering 90 to 95 percent of National Target Population; England-GBR had National Defined Population that covered less than 90 percent of National Target Population (but at least 77 percent); England-GBR, Netherlands, Australia, and Austria did not satisfy guidelines for sample participation rates. For 2007, the United States, Quebec-CAN, Ontario-CAN, and Alberta-CAN had National Defined Population covering 90 to 95 percent of National Target Population; the United States and Denmark met guidelines for sample participation rates only after replacement schools were included; the Netherlands and Dubai-UAE nearly satisfied guidelines for sample participation rates after replacement schools were included; Georgia had a National Target Population that did not include all of the International Target Population; Dubai-UAE tested the same cohort of students as other countries, but later in the assessment year at the beginning of the next school year.
 All average scores reported as higher or lower than the U.S. average score are different at the .05 level of statistical significance. The tests for significance take into account the standard error for the reported difference. Thus, a small difference between averages for one education system may be significant, while a large difference for another education system may not be significant. Detail may not sum to totals because of rounding. The standard errors of the estimates are shown in table E-24 available at http://nces.ed.gov/pubsearch/pubsinfo.asp?pubid=2013009.
 SOURCE: International Association for the Evaluation of Educational Achievement (IEA), Trends in International Mathematics and Science Study (TIMSS), 1995, 2007, and 2011

[^21]: ${ }^{23}$ Although the average score of England-GBR and Lithuania did not decrease measurably, England-GBR's standing relative to the United States moved from above the United States in 2007 to being not measurably different in 2011, and Lithuania's standing relative to the United States moved from being not measurably different in 2007 to scoring below the United States in 2011.

[^22]: 0 Score is higher than U.S. score.
 (7) Score is lower than U.S. score.

 Change from 2007 to 2011.
 \square Change from 1995 to 2011.
 \# Rounds to zero.
 ${ }^{*} p<.05$. Change in average scores is significant.
 ${ }^{1}$ The change in average score is calculated by subtracting the 2007 or 1995 estimate, respectively, from the 2011 estimate using unrounded numbers.
 ${ }^{2}$ National Defined Population covers 90 to 95 percent of National Target Population for 2011 (see appendix A).
 ${ }^{3}$ Nearly satisfied guidelines for sample participation rates after replacement schools were included for 2011.
 ${ }^{4}$ National Target Population does not include all of the International Target Population for 2011 (see appendix A).
 ${ }^{5}$ Exclusion rates for Georgia are slightly underestimated as some conflict zones were not covered and no official statistics were available for 2011.
 ${ }^{6}$ The TIMSS International Study Center has reservations about the reliability of the average achievement score because the percentage of students with achievement too low for estimation in 2011 exceeds 15 percent, though it is less than 25 percent.
 NOTE: Education systems are ordered by 2011 average scores. Italics indicate participants identified and counted in this report as an education system and not as a separate country. All education systems met international sampling and other guidelines in 2011, except as noted. Data are not shown for some education systems because comparable data from previous cycles are not available. Participants that did not administer TIMSS at the target grade are not shown; see the international report for their results. All U.S. state data are based on public school students only.
 For 1995, Lithuania's National Target Population did not include all of the International Target Population; the Russian Federation and Lithuania had a National Defined Population that covered 90 to 95 percent of National Target Population; England-GBR, and Ontario-CAN had a National Defined Population that covered less than 90 percent of National Target Population (but at least 77 percent); the United States, England-GBR, and Minnesota-USA met guidelines for sample participation rates only after replacement schools were included. For 2007, Lithuania, Georgia, and Indonesia had National Target Populations that did not include all of the International Target Population; the United States, Massachusetts-USA, Minnesota-USA, and Ontario-CAN had National Defined Population that covered 90 to 95 percent of National Target Population; Hong Kong-CHN, England-GBR, and Minnesota-USA met guidelines for sample participation rates only after replacement schools were included; Dubai-UAE nearly satisfied guidelines for sample participation rates after replacement schools were included.
 All average scores reported as higher or lower than the U.S. average score are different at the .05 level of statistical significance. The tests for significance take into account the standard error for the reported difference. Thus, a small difference between averages for one education system may be significant, while a large difference for another education system may not be significant. Detail may not sum to totals because of rounding. The standard errors of the estimates are shown in table E-25 available at http://nces.ed.gov/pubsearch/pubsinfo.asp?pubid=2013009.
 SOURCE: International Association for the Evaluation of Educational Achievement (IEA), Trends in International Mathematics and Science Study (TIMSS), 1995, 2007, and 2011

[^23]: Advanced benchmark
 High benchmark
 Intermediate benchmark
 \square Low benchmark
 \# Rounds to zero.
 ${ }^{*} p<.05$. Percentage is significantly different from the U.S. percentage at the same benchmark.
 ${ }^{1}$ National Defined Population covers 90 to 95 percent of National Target Population (see appendix A).
 ${ }^{2}$ Met guidelines for sample participation rates only after replacement schools were included.
 ${ }^{3}$ National Target Population does not include all of the International Target Population (see appendix A).
 ${ }^{4}$ Exclusion rates for Azerbaijan and Georgia are slightly underestimated as some conflict zones were not covered and no official statistics were available.
 ${ }^{5}$ Nearly satisfied guidelines for sample participation rates after replacement schools were included.
 ${ }^{6}$ The TIMSS International Study Center has reservations about the reliability of the average achievement score because the percentage of students with achievement too low for estimation exceeds 15 percent, though it is less than 25 percent.
 ${ }^{7}$ The TIMSS International Study Center has reservations about the reliability of the average achievement score because the percentage of students with achievement too low for estimation exceeds 25 percent.
 ${ }^{8}$ National Defined Population covers less than 90 percent, but at least 77 percent of National Target Population (see appendix A).
 NOTE: Education systems are ordered by percentage at Advanced international benchmark. Italics indicate participants identified and counted in this report as an education system and not as a separate country. The TIMSS international median represents all participating TIMSS education systems, including the United States, shown in the main part of the figure; benchmarking education systems are not included in the median. Participants that did not administer TIMSS at the target grade are not shown; see the international report for their results. All U.S. state data are based on public school students only. The tests for significance take into account the standard error for the reported difference. Thus, a small difference between the United States and one education system may be significant while a large difference between the United States and another education system may not be significant. The standard errors of the estimates are shown in table E-28 available at http://nces. ed.gov/pubsearch/pubsinfor.asp?pubid=2013009.
 SOURCE: International Association for the Evaluation of Educational Achievement (IEA), Trends in International Mathematics and Science Study (TIMSS), 2011.

[^24]: Advanced benchmark
 High benchmark

 - Intermediate benchmark
 \square Low benchmark
 \# Rounds to zero.
 ${ }^{*} p<.05$. Percentage is significantly different from the U.S. percentage at the same benchmark.
 ${ }^{1}$ National Defined Population covers 90 to 95 percent of National Target Population (see appendix A).
 ${ }^{2}$ Nearly satisfied guidelines for sample participation rates after replacement schools were included.
 ${ }^{3}$ National Defined Population covers less than 90 percent, but at least 77 percent of National Target Population (see appendix A).
 ${ }^{4}$ National Target Population does not include all of the International Target Population (see appendix A).
 ${ }^{5}$ Exclusion rates for Georgia are slightly underestimated as some conflict zones were not covered and no official statistics were available.
 ${ }^{6}$ The TIMSS International Study Center has reservations about the reliability of the average achievement score because the percentage of students with achievement too low for estimation exceeds 15 percent, though it is less than 25 percent.
 NOTE: Education systems are ordered by percentage at Advanced international benchmark. Italics indicate participants identified and counted in this report as an education system and not as a separate country. The TIMSS international median represents all participating TIMSS education systems, including the United States, shown in the main part of the figure; benchmarking education systems are not included in the median. Participants that did not administer TIMSS at the target grade are not shown; see the international report for their results. All U.S. state data are based on public school students only. The tests for significance take into account the standard error for the reported difference. Thus, a small difference between the United States and one education system may be significant while a large difference between the United States and another education system may not be significant. The standard errors of the estimates are shown in table E-29 available at http://nces. ed.gov/pubsearch/pubsinfor.asp?pubid=2013009.
 SOURCE: International Association for the Evaluation of Educational Achievement (IEA), Trends in International Mathematics and Science Study (TIMSS), 2011.

[^25]: ${ }^{*} p<.05$. Difference between score and U.S. average score is significant. NOTE: Analyses are limited to public schools only, based on school reports of the percentage of students in public school eligible for the federal free or reduced-price lunch program. The standard errors of the estimates are shown in table E-33 available at http://nces.ed.gov/pubsearch/pubsinfor. asp?pubid=2013009.
 SOURCE: International Association for the Evaluation of Educational Achievement (IEA), Trends in International Mathematics and Science Study (TIMSS), 2011.

[^26]: NOTE: Italics indicate participants identified and counted in this report as an education system and not as a separate country.
 SOURCE: International Association for the Evaluation of Educational Achievement (IEA), Trends in International Mathematics and Science Study (TIMSS), 2011.

[^27]: ${ }^{3}$ In some cases, sampled schools were unable to accommodate both studies due to small student enrollment in grade 4 or scheduling conflicts. Schools with at least two grade 4 classrooms were asked to participate in both studies, with one classroom being randomly assigned to TIMSS and the other to PIRLS. Up to two TIMSS classes and two PIRLS classes were selected in schools with sufficient student enrollment. In schools with only one grade 4 classroom, either the TIMSS or PIRLS assessment was randomly assigned, but not both. In no cases were the same students asked to complete both the TIMSS and PIRLS assessments at grade 4.

[^28]: ${ }^{4}$ The primary purpose of stratification is to improve the precision of the survey estimates. If explicit stratification of the population is used, the units of interest (schools, for example) are sorted into mutually exclusive subgroups-strata. Units in the same stratum are as homogeneous as possible, and units in different strata are as heterogeneous as possible, with respect to the characteristics of interest to the survey. Separate samples are then selected from each stratum. In the case of implicit stratification, the units of interest are simply sorted with respect to one or more variables known to have a high correlation with the variable of interest. In this way, implicit stratification guarantees that the sample of units selected will be spread across the categories of the stratification variables.
 ${ }^{5}$ The Northeast region consists of Connecticut, Delaware, the District of Columbia, Maine, Maryland, Massachusetts, New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, and Vermont. The Central region consists of Illinois, Indiana, Iowa, Kansas, Michigan, Minnesota, Missouri, Nebraska, North Dakota, Ohio, Wisconsin, and South Dakota. The West region consists of Alaska, Arizona, California, Colorado, Hawaii, Idaho, Montana, Nevada, New Mexico, Oklahoma, Oregon, Texas, Utah, Washington, and Wyoming. The Southeast region consists of Alabama, Arkansas, Florida, Georgia, Kentucky, Louisiana, Mississippi, North Carolina, South Carolina, Tennessee, Virginia, and West Virginia.
 ${ }^{6}$ Four community types are distinguished: city of 250,000 or larger; suburb less than 250,000 ; town of 25,000 or more; rural metropolitan statistical area (MSA).
 ${ }^{7}$ In order to maximize response rates from both districts and schools it was necessary to begin the recruitment of both prior to the end of the 2009-10 school year. Since the 2011 NAEP sampling frame was not available until March 2010, it was necessary to base the TIMSS samples on the 2010 NAEP sampling frame

[^29]: ${ }^{8}$ Since classrooms are sampled with equal probability within schools, small classrooms would have the same probability of selection as large classrooms. Selecting classrooms under these conditions would likely mean that student sample size would be reduced, and some instability in the sampling weights created. To avoid these problems, pseudo-classrooms are created for the purposes of classroom sampling, in which small classrooms are joined to reach a larger student count. These pseudo-classrooms are treated as single classes in the class sampling process. Following class sampling, the pseudo-classroom combinations are dissolved and the small classes involved retain their own identity. In this way, data on students, teachers, and classroom practices are linked in small classes in the same way as with larger classes.
 ${ }^{9}$ The classrooms selected could be pseudo-classrooms.

[^30]: ${ }^{11}$ Substitute schools are matched pairs and do not have an independent probability of selection. NCES standards (Standard 1-3-8) indicate that, in these circumstances, response rates should be calculated without including substitute schools (National Center for Education Statistics 2002). TIMSS response rates denoted as "before replacement" conform to this standard. TIMSS response rates denoted as "after replacement" are not consistent with NCES standards since, in the calculation of these rates, substitute schools are treated as the equivalent of sampled schools.

[^31]: ${ }^{12}$ Substitute schools are matched pairs and do not have an independent probability of selection. NCES standards (Standard 1-3-8) indicate that, in these circumstances, response rates should be calculated without including substitute schools (National Center for Education Statistics 2002). TIMSS response rates denoted as "before replacement" conform to this standard. TIMSS response rates denoted as "after replacement" are not consistent with NCES standards since, in the calculation of these rates, substitute schools are treated as the equivalent of sampled schools.

[^32]: See notes at end of table.

[^33]: See notes at end of table.

[^34]: ${ }^{13} \mathrm{~A}$ detailed treatment of the meaning and calculation of sampling weights, including the nonresponse adjustment factors, is provided in TIMSS and PIRLS Methods and Procedures (Martin and Mullis 2011).
 ${ }^{14}$ Comparing characteristics for respondents and nonrespondents is not always a good measure of nonresponse bias if the characteristics are either unrelated or weakly related to more substantive items in the survey. Nevertheless, this is often the only approach available.
 ${ }^{15}$ NAEP region and community type were dummy coded for the purposes of these analyses. In the case of NAEP region, "West" was used as the reference group. For community type, "urban fringe/large town" was chosen as the reference group.

[^35]: ${ }^{16}$ The measure of school poverty is based on the proportion of students in a school eligible for the free or reduced-price lunch (FRPL) program, a federally assisted meal program that provides nutritionally balanced, low-cost or free lunches to eligible children each school day. For the purposes of the nonresponse bias analyses, schools were classified as "low poverty" if less than 50 percent of the students were eligible for FRPL and as "high poverty" if 50 percent or more of the students were eligible. Since the nonresponse bias analyses involve both participating and nonparticipating schools, they are based, out of necessity, on data from the sampling frame. TIMSS data are not available for nonparticipating schools. The school frame data are derived from the CCD and PSS. The CCD data provide information on the percentage of students in each school who are eligible for free or reduced-price lunch, but are limited to public schools. The PSS data do not provide the same information for private schools. In the interest of retaining all of the schools and students in these analyses, private schools were assumed to be low-poverty schools-that is, they were assumed to be schools in which less than 50 percent of students were eligible for FRPL. Separate analyses of the TIMSS data for participating private schools suggest the reasonableness of this assumption. Of the 21 grade 4 private schools, only one reports having 50 percent or more of students eligible for FRPL.
 ${ }^{17}$ Two forms of this school attribute were used in the analyses. In the bivariate analyses the percentage of each racial/ethnic group was related separately to participation status. In the logistic regression analyses a single measure was used to characterize each school, namely, "percentage of minority students."

[^36]: ${ }^{18}$ The international weighting procedures created a nonresponse adjustment class for each explicit stratum; see TIMSS and PIRLS Methods and Procedures (Mullis et al. 2011) for details. In the case of the U.S. 4th-grade sample, there was no explicit stratification and thus a single adjustment class. The procedures could not be varied for individual countries to account for any specific needs. Therefore, the U.S. nonresponse bias analyses could have no influence on the weighting procedures and were undertaken after the weighting process was complete.

[^37]: ${ }^{20}$ Key variables include survey-specific items for which aggregate estimates are commonly published by NCES. They include, but are not restricted to, variables most commonly used in table row stubs. Key variables also include important analytic composites and other policy-relevant variables that are essential elements of the data collection. For example, the National Assessment of Educational Progress (NAEP) consistently uses sex, race/ethnicity, urbanicity, region, and school type (public/private) as key reporting variables.

[^38]: ${ }^{21}$ The NCES standards describe such techniques as follows: perturbation disclosure limitation techniques directly alter the individual respondent's data for some variables, but preserve the level of detail in all variables included in the microdata file. The following are examples of perturbation techniques: blanking and imputing for randomly selected records; blurring (e.g., combining multiple records through some averaging process into a single record); adding random noise; and data swapping or switching (e.g., switching the sex variable from a predetermined pair of individuals) are all examples of perturbation techniques (National Center for Education Statistics 2002).

[^39]: ${ }^{1}$ National Defined Population covers 90 to 95 percent of National Target Population (see appendix A). ${ }^{2}$ Met guidelines for sample participation rates only after replacement schools were included.
 ${ }^{3}$ National Target Population does not include all of the International Target Population (see appendix A).
 ${ }^{4}$ Nearly satisfied guidelines for sample participation rates after replacement schools were included.
 ${ }^{5}$ The TIMSS International Study Center has reservations about the reliability of the average achievement score because the percentage of students with achievement too low for estimation exceeds 15 percent, though it is
 less than 25 percent.
 ${ }^{6}$ Exclusion rates for Azerbaijan and Georgia are slightly underestimated as some conflict zones were not covered and no official statistics were available.
 ${ }^{7}$ The TIMSS International Study Center has reservations about the reliability of the average achievement score because the percentage of students with achievement too low for estimation exceeds 25 percent.
 ${ }^{8}$ National Defined Population covers less than 90 percent, but at least 77 percent, of National Target Population (see appendix A).
 NOTE: Education systems are sorted by 2011 average percent correct. The answer shown illustrates the type of student response that was given full credit. SOURCE: International Association for the Evaluation of Educational Achievement (IEA), Trends in International Mathematics and Science Study (TIMSS), 2011.

[^40]: ${ }^{1}$ National Defined Population covers 90 to 95 percent of National Target Population (see appendix A). ${ }^{2}$ Met guidelines for sample participation rates only after replacement schools were included.
 ${ }^{3}$ National Target Population does not include all of the International Target Population (see appendix A).
 ${ }^{4}$ The TIMSS International Study Center has reservations about the reliability of the average achievement score because the percentage of students with achievement too low for estimation exceeds 25 percent.
 ${ }^{5}$ The TIMSS International Study Center has reservations about the reliability of the average achievement score because the percentage of students with achievement too low for estimation exceeds 15 percent, though it is less than 25 percent.
 ${ }^{6}$ Nearly satisfied guidelines for sample participation rates after replacement schools were included.
 ${ }^{7}$ Exclusion rates for Azerbaijan and Georgia are slightly underestimated as some conflict zones were not covered and no official statistics were available.
 ${ }^{8}$ National Defined Population covers less than 90 percent, but at least 77 percent, of National Target Population (see appendix A).
 NOTE: Education systems are sorted by 2011 average percent correct. The answer shown illustrates the type of student response that was given full credit.
 SOURCE: International Association for the Evaluation of Educational Achievement (IEA), Trends in International Mathematics and Science Study (TIMSS), 2011.

[^41]: - Not available.
 ${ }^{1}$ National Target Population does not include all of the International Target Population (see appendix A).
 ${ }^{2}$ National Defined Population covers 90 to 95 percent of National Target Population (see appendix A).
 ${ }^{3}$ Met guidelines for sample participation rates only after replacement schools were included.
 ${ }^{4}$ Exclusion rates for Azerbaijan and Georgia are slightly underestimated as some conflict zones were not covered and no official statistics were available.
 ${ }^{5}$ Nearly satisfied guidelines for sample participation rates after replacement schools were included.
 ${ }^{6}$ The TIMSS International Study Center has reservations about the reliability of the average achievement score because the percentage of students with achievement too low for estimation exceeds 25 percent.
 ${ }^{7}$ The TIMSS International Study Center has reservations about the reliability of the average achievement score because the percentage of students with achievement too low for estimation exceeds 15 percent, though it is less than 25 percent.
 ${ }^{8}$ National Defined Population covers less than 90 percent, but at least 77 percent, of National Target Population (see appendix A).
 NOTE: Education systems are sorted by 2011 average percent correct. The answer shown illustrates the type of student response that was given full credit.
 SOURCE: International Association for the Evaluation of Educational Achievement (IEA), Trends in International Mathematics and Science Study (TIMSS), 2011.

[^42]: ${ }^{1}$ Met guidelines for sample participation rates only after replacement schools were included.
 ${ }^{2}$ National Defined Population covers 90 to 95 percent of National Target Population (see appendix A).
 ${ }^{3}$ National Target Population does not include all of the International Target Population (see appendix A).
 ${ }^{4}$ Exclusion rates for Azerbaijan and Georgia are slightly underestimated as some conflict zones were not covered and no official statistics were available.
 ${ }^{5}$ Nearly satisfied guidelines for sample participation rates after replacement schools were included.
 ${ }^{6}$ The TIMSS International Study Center has reservations about the reliability of the average achievement score because the percentage of students with achievement too low for estimation exceeds 15 percent, though it is less than 25 percent.
 ${ }^{7}$ The TIMSS International Study Center has reservations about the reliability of the average achievement score because the percentage of students with achievement too low for estimation exceeds 25 percent.
 ${ }^{8}$ National Defined Population covers less than 90 percent, but at least 77 percent, of National Target Population (see appendix A).
 NOTE: Education systems are sorted by 2011 average percent correct. The answer shown illustrates the type of student response that was given full credit.
 SOURCE: International Association for the Evaluation of Educational Achievement (IEA), Trends in International Mathematics and Science Study (TIMSS), 2011.

[^43]: ${ }^{1}$ National Defined Population covers 90 to 95 percent of National Target Population (see appendix A).
 ${ }^{2}$ National Defined Population covers less than 90 percent, but at least 77 percent, of National Target Population (see appendix A).
 ${ }^{3}$ Nearly satisfied guidelines for sample participation rates after replacement schools were included.
 ${ }^{4}$ The TIMSS International Study Center has reservations about the reliability of the average achievement score because the percentage of students with achievement too low for estimation exceeds 25 percent.
 ${ }^{5}$ The TIMSS International Study Center has reservations about the reliability of the average achievement score because the percentage of students with achievement too low for estimation exceeds 15 percent, though it is less than 25 percent.
 ${ }^{6}$ National Target Population does not include all of the International Target Population (see appendix A).
 ${ }^{7}$ Exclusion rates for Georgia are slightly underestimated as some conflict zones were not covered and no official statistics were available.
 NOTE: Education systems are sorted by 2011 average percent correct. The answer shown illustrates the type of student response that was given full credit.
 SOURCE: International Association for the Evaluation of Educational Achievement (IEA), Trends in International Mathematics and Science Study (TIMSS), 2011.

[^44]: ${ }^{1}$ National Defined Population covers 90 to 95 percent of National Target Population (see appendix A).
 ${ }^{2}$ Nearly satisfied guidelines for sample participation rates after replacement schools were included.
 ${ }^{3}$ National Target Population does not include all of the International Target Population (see appendix A).
 ${ }^{4}$ National Defined Population covers less than 90 percent, but at least 77 percent, of National Target Population (see appendix A).
 ${ }^{5}$ The TIMSS International Study Center has reservations about the reliability of the average achievement score because the percentage of students with achievement too low for estimation exceeds 15 percent, though it is less than 25 percent.
 ${ }^{6}$ Exclusion rates for Georgia are slightly underestimated as some conflict zones were not covered and no official statistics were available.
 ${ }^{7}$ The TIMSS International Study Center has reservations about the reliability of the average achievement score because the percentage of students with achievement too low for estimation exceeds 25 percent. NOTE: Education systems are sorted by 2011 average percent correct. The answer shown illustrates the type of student response that was given full credit.

[^45]: ${ }^{1}$ National Defined Population covers 90 to 95 percent of National Target Population (see appendix A).
 ${ }^{2}$ Nearly satisfied guidelines for sample participation rates after replacement schools were included.
 ${ }^{3}$ National Defined Population covers less than 90 percent, but at least 77 percent, of National Target Population (see appendix A).
 ${ }^{4}$ National Target Population does not include all of the International Target Population (see appendix A).
 ${ }^{5}$ The TIMSS International Study Center has reservations about the reliability of the average achievement score because the percentage of students with achievement too low for estimation exceeds 15 percent, though it is less than 25 percent.
 ${ }^{6}$ Exclusion rates for Georgia are slightly underestimated as some conflict zones were not covered and no official statistics were available.
 ${ }^{7}$ The TIMSS International Study Center has reservations about the reliability of the average achievement score because the percentage of students with achievement too low for estimation exceeds 25 percent. NOTE: Education systems are sorted by 2011 average percent correct. The answer shown illustrates the type of student response that was given full credit.

[^46]: — Not available.
 ${ }^{1}$ National Defined Population covers 90 to 95 percent of National Target Population (see appendix A).
 ${ }^{2}$ Nearly satisfied guidelines for sample participation rates after replacement schools were included.
 ${ }^{3}$ The TIMSS International Study Center has reservations about the reliability of the average achievement score because the percentage of students with achievement too low for estimation exceeds 25 percent.
 ${ }^{4}$ The TIMSS International Study Center has reservations about the reliability of the average achievement score because the percentage of students with achievement too low for estimation exceeds 15 percent, though it is less than 25 percent.
 ${ }^{5}$ National Defined Population covers less than 90 percent, but at least 77 percent, of National Target Population (see appendix A).
 ${ }^{6}$ National Target Population does not include all of the International Target Population (see appendix A).
 ${ }^{7}$ Exclusion rates for Georgia are slightly underestimated as some conflict zones were not covered and no official statistics were available.
 NOTE: Education systems are sorted by 2011 average percent correct. The answer shown illustrates the type of student response that was given full credit.
 SOURCE: International Association for the Evaluation of Educational Achievement (IEA), Trends in International Mathematics and Science Study (TIMSS), 2011.

[^47]: ${ }^{1}$ National Defined Population covers 90 to 95 percent of National Target Population (see appendix A).
 ${ }^{2}$ Nearly satisfied guidelines for sample participation rates after replacement schools were included.
 ${ }^{3}$ Met guidelines for sample participation rates only after replacement schools were included.
 ${ }^{4}$ National Target Population does not include all of the International Target Population (see appendix A).
 ${ }^{5}$ Exclusion rates for Azerbaijan and Georgia are slightly underestimated as some conflict zones were not covered and no official statistics were available.
 ${ }^{6}$ The TIMSS International Study Center has reservations about the reliability of the average achievement score because the percentage of students with achievement too low for estimation exceeds 15 percent, though it is less than 25 percent.
 ${ }^{7}$ The TIMSS International Study Center has reservations about the reliability of the average achievement score because the percentage of students with achievement too low for estimation exceeds 25 percent.
 ${ }^{8}$ National Defined Population covers less than 90 percent, but at least 77 percent, of National Target Population (see appendix A).
 NOTE: Education systems are sorted by 2011 average percent correct. The answer shown illustrates the type of student response that was given full credit.

[^48]: ${ }^{1}$ National Defined Population covers 90 to 95 percent of National Target Population (see appendix A). ${ }^{2}$ Met guidelines for sample participation rates only after replacement schools were included.
 ${ }^{3}$ National Target Population does not include all of the International Target Population (see appendix A).
 ${ }^{4}$ Nearly satisfied guidelines for sample participation rates after replacement schools were included.
 ${ }^{5}$ The TIMSS International Study Center has reservations about the reliability of the average achievement score because the percentage of students with achievement too low for estimation exceeds 15 percent, though it is less than 25 percent.
 ${ }^{6}$ Exclusion rates for Azerbaijan and Georgia are slightly underestimated as some conflict zones were not covered and no official statistics were available.
 ${ }^{7}$ The TIMSS International Study Center has reservations about the reliability of the average achievement score because the percentage of students with achievement too low for estimation exceeds 25 percent.
 ${ }^{8}$ National Defined Population covers less than 90 percent, but at least 77 percent, of National Target Population (see appendix A).
 NOTE: Education systems are sorted by 2011 average percent correct. The answer shown illustrates the type of student response that was given full credit.
 SOURCE: International Association for the Evaluation of Educational Achievement (IEA), Trends in International Mathematics and Science Study (TIMSS), 2011.

[^49]: ${ }^{1}$ Met guidelines for sample participation rates only after replacement schools were included.
 ${ }^{2}$ National Defined Population covers 90 to 95 percent of National Target Population (see appendix A).
 ${ }^{3}$ National Target Population does not include all of the International Target Population (see appendix A). not covered and no official statistics were available.
 ${ }^{4}$ Exclusion rates for Azerbaijan and Georgia are slightly underestimated as some conflict zones were not covered and no official statistics were available.
 ${ }^{5}$ Nearly satisfied guidelines for sample participation rates after replacement schools were included.
 ${ }^{6}$ The TIMSS International Study Center has reservations about the reliability of the average achievement score because the percentage of students with achievement too low for estimation exceeds 15 percent, though it is less than 25 percent.
 ${ }^{7}$ The TIMSS International Study Center has reservations about the reliability of the average achievement score because the percentage of students with achievement too low for estimation exceeds 25 percent.
 ${ }^{8}$ National Defined Population covers less than 90 percent, but at least 77 percent, of National Target Population (see appendix A).
 NOTE: Education systems are sorted by 2011 average percent correct. The answer shown illustrates the type of student response that was given full credit.
 SOURCE: International Association for the Evaluation of Educational Achievement (IEA), Trends in International Mathematics and Science Study (TIMSS), 2011.

[^50]: ${ }^{1}$ National Defined Population covers 90 to 95 percent of National Target Population (see appendix A).
 ${ }^{2}$ National Target Population does not include all of the International Target Population (see appendix A).
 ${ }^{3}$ National Defined Population covers less than 90 percent, but at least 77 percent, of National Target Population (see appendix A).
 ${ }^{4}$ Nearly satisfied guidelines for sample participation rates after replacement schools were included.
 ${ }^{5}$ Exclusion rates for Georgia are slightly underestimated as some conflict zones were not covered and no official statistics were available.
 ${ }^{6}$ The TIMSS International Study Center has reservations about the reliability of the average achievement score because the percentage of students with achievement too low for estimation exceeds 15 percent, though it is less than 25 percent.
 NOTE: Education systems are sorted by 2011 average percent correct. The answer shown illustrates the type of student response that was given full credit.
 SOURCE: International Association for the Evaluation of Educational Achievement (IEA), Trends in International Mathematics and Science Study (TIMSS), 2011.

[^51]: ${ }^{1}$ National Defined Population covers 90 to 95 percent of National Target Population (see appendix A).
 ${ }^{2}$ National Target Population does not include all of the International Target Population (see appendix A).
 ${ }^{3}$ Nearly satisfied guidelines for sample participation rates after replacement schools were included.
 ${ }^{4}$ National Defined Population covers less than 90 percent, but at least 77 percent, of National Target Population (see appendix A).
 ${ }^{5}$ Exclusion rates for Georgia are slightly underestimated as some conflict zones were not covered and no official statistics were available.
 ${ }^{6}$ The TIMSS International Study Center has reservations about the reliability of the average achievement score because the percentage of students with achievement too low for estimation exceeds 15 percent, though it is
 less than 25 percent.
 NOTE: Education systems are sorted by 2011 average percent correct. The answer shown illustrates the type of student response that was given full credit.
 SOURCE: International Association for the Evaluation of Educational Achievement (IEA), Trends in International Mathematics and Science Study (TIMSS), 2011.

[^52]: ${ }^{1}$ National Defined Population covers 90 to 95 percent of National Target Population (see appendix A).
 ${ }^{2}$ National Defined Population covers less than 90 percent, but at least 77 percent, of National Target Population (see appendix A).
 ${ }^{3}$ Nearly satisfied guidelines for sample participation rates after replacement schools were included.
 ${ }^{4}$ National Target Population does not include all of the International Target Population (see appendix A).
 ${ }^{5}$ Exclusion rates for Georgia are slightly underestimated as some conflict zones were not covered and no official statistics were available.
 ${ }^{6}$ The TIMSS International Study Center has reservations about the reliability of the average achievement score because the percentage of students with achievement too low for estimation exceeds 15 percent, though it is less than 25 percent.
 NOTE: Education systems are sorted by 2011 average percent correct. The answer shown illustrates the type of student response that was given full credit.
 SOURCE: International Association for the Evaluation of Educational Achievement (IEA), Trends in International Mathematics and Science Study (TIMSS), 2011.

[^53]: 1 The percentage of "no fit" items by grade level is smaller than the percentage of "no fit" items by content level. This is because some of the content-level "no fit" items were determined to be implied in the NAEP 2011 framework at a particular grade.

[^54]: 2 As with the mathematics assessments, the percentage of "no fit" items

